
www.circuitcellar.com/online CIRCUIT CELLAR ONLINE®
September 2001 1

his is the final
installment in this

series of articles
describing Rabbit

Semiconductor and Z-World comput-
ing modules. Instead of writing from
the familiar confines of the Florida
room, this installment is being
brought to you from a Gulf shore
beach bungalow in the Florida
Panhandle. Right now, it’s raining
sideways and has been since I arrived.
Consequently, I’ve done some TV
time that was originally reserved for
listening to the surf and watching the
gulls and pelicans do some aerial beak
fishing.

With rain pounding the ocean-side
sliding glass doors, the only “surfing”
I can do is with the television remote.
I happened upon a History Channel
episode featuring the guns of Sam
Colt. My Dad is a retired Army
Command Sergeant Major, and as a
result, over the years I developed an
interest in military history. If you’re
interested in the ways of the military,

FEATURE
ARTICLE

As a result of torrential
rain on his vacation, Fred
got the "opportunity" to
check out a TV documen-
tary on Colt weapons.
This triggered an idea for
the final installment of
articles on Rabbit
Semiconductor and Z-
World computing mod-
ules. This article is
loaded with information,
so sit back and imagine a
beach bungalow on the
Gulf shore….

Fred Eady

you’re also intrigued with a major
part of any military operation—guns.

I don’t recall any Westerns where
the shoot-out stalled for a major
reload session. In fact, some cowboys
seemed to have self-loading pistols, as
they never seemed to run out of bul-
lets. To my amazement, the TV docu-
mentary pointed out that all of Sam’s
early five-shooters (there were no six-
shooters in the beginning) came with
a set of specialized tools. The well-
built early Colt revolvers had to be
partially disassembled to load powder
and ball, and the tools included with
the guns were a necessary evil for the,
at that time, much-sought-after
multi-shot capability that the Colt
pistols provided.

As a young man, Sam took a job as
a common laborer on a cargo vessel.
The idea of a multi-shot handgun
came to Sam as he watched the
helmsman turn and lock down the
wheel. He applied the turn and lock
method to bullets and barrels, and the
rest is history.

As Sam’s first series of revolvers
found homes in the hands of lawmen
and soldiers, the “tool set” disap-
peared as improvements suggested by
the guns’ users were rolled into later

Fine Tuning an Embedded
Idea

t

Part 3: Armed and Ready

Photo 1—This is the microprocessor business end of
the RCM2300. The 11.0592-MHz microprocessor clock
crystal is at the far left, and the black 32.768-KHz real
time clock crystal can be seen on the far right. All of
the MOSFETs and transistors used to switch various
functions including the backup battery are located on
this side of the RCM2300 board.

2 September 2001 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

production models. Ultimately, the
30-something parts of the first Colt-
Patterson guns were reduced to seven.
The most famous Colt six-shooter,
the Peace Maker, is still in production
today alongside the military M-16
automatic rifle, which is also a Colt
product.

The success of Sam’s revolvers
came with the combination of a
reduced parts count and prefabricated
metal-jacketed ammunition. A mini-
mum of moving parts coupled with a
drastically shortened reload time
made Sam Colt’s guns must-have
items for lawmen, native Americans,
soldiers, and bandits.

This is hardly the forum for dis-
cussing weapons of war, but watching
the piece on Sam’s Colt revolvers put
a relative thought in my mind about
embedded computing. In the begin-
ning, prior to the introduction of the
8047 and 8051 and even through the
Z80 days, the smallest of embedded
computing platforms consisted of the
microprocessor, a clock generator IC
with associated crystal, buffers and
latches for the address and data
busses, one or more ROMs, one or
more RAM devices, and a UART
IC. If the embedded device required
interrupts or analog input, a few
more specialty ICs could be added
to the mix I just mentioned.
Although you had to thoroughly
understand the hardware and
firmware aspects of such an embed-
ded system to get anything out of
it, this conglomeration of discrete
ICs could be successfully brought
together as a working embedded
unit outside the lab by computer
hackers of the day.

My first throw at embedded com-
puting was the breadboarding of an
Intel 8088 machine, complete with
2716 EPROM, 2 KB of static RAM, a
keypad with associated circuitry, and
a 4-digit 7-segment LED display array
with support circuitry. That was a
mouthful, and the 8088 system I
assembled was a mass of wire wrap
wire crafted on a 0.100″-center perf-
board and wire wrap sockets I pur-
chased at Radio Shack. At the time, I
didn’t even own an EPROM program-
mer. I entered the assembled machine
code into the 2716 EPROM by hand
using a crude lash-up of latches and
toggle switches.

It’s still raining at the windows
here, and I’m just as hard-code embed-
ded now as I was then. I still like to
assemble microprocessor- and micro-
controller-based embedded systems
piece by piece, but sometimes it’s eas-
ier (and faster) to use an off-the-shelf
embedded component. And, like
Sam’s Peace Maker, the less compli-
cated the better.

RETRO RABBIT
Recently, I was given the “oppor-

tunity” to retrofit an existing micro-
controller in a relay control module.
The upgrade required that the new
embedded computer fit within the
existing area occupied by the current
microcontroller. In addition, the new
embedded microcontroller must
include nonvolatile storage with
unlimited read/write capability and a
real time clock. With the addition of
the real time clock and nonvolatile
storage, a way was needed to retrieve

or change the nonvolatile data and set
and read the time if necessary.

Serial communication between the
relay module and a personal computer
would be the simplest method to
effect this. So, the new embedded
computer would also need at least one
UART capable of asynchronous opera-
tion. There was a possibility that the
relay modules would need to be net-
worked to a master controller, which
uses RS-485, on the plant floor. To
accommodate this anticipation, the
newly installed microprocessor com-
plex needed an additional serial port
capable of RS-485 operation.

If you were paying attention, you
already know this will not be an
“8088 breadboard” solution. After
carefully measuring the area around
the relay module’s current microcon-
troller, I conclude that I had about
4.5″3 of space to contain the upgraded
embedded microcontroller. Using sur-
face mount parts, I figured I could eas-
ily fit all of the necessary hardware in

the space I had. Problem was, I’d be
doing this more than once, as there
were many units to be converted.
Because I didn’t farm out any of the
assembly work, I wanted to make
this as easy on myself as possible.
So, on my part that means minimal
printed circuit design with an
absolute minimum of parts on the
board.

Although this task could have
been accomplished with most any
microprocessor complex, the quick-
est way from point A to point B
was the RCM2300. As of the time I
wrote this article, the RCM2300 is

Photo 2—This side of the RCM2300 holds the data
processed by the topside. The physical interconnects
are also here as 26-pin headers.

Figure 1—If you’re wondering where some of the other I/O
pins are, they are implemented as connection points along the
mounting hole edge of the RCM2300.

Photo 3—This is the bottom side of the RCM2300-
based upgrade module. Note the dual inline header
pins. These pins allow the enhanced RCM2300-based
embedded complex to assume the pinout of the micro-
controller it is replacing.

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE September 2001 3

the smallest RabbitCore module
available. The RCM2300 is a small
microprocessor complex (1.15″ ×
1.60″) based on the Rabbit
Semiconductor Rabbit 2000 micro-
processor. The RCM2300 was
designed to be “plugged in” and sits
atop two 26-pin, 2-mm male headers.
Most everything required to replace
the old microcontroller and perform
the newly required tasks was accom-
plished with the RCM2300 hardware.

Photos 1 and 2 are respective top-
side and bottom views of the
RCM2300. The processing and
switching components are located on
the topside. As you can see in Photo
2, 256 KB of flash memory and 128
KB of SRAM are bolted to the bottom
of the RCM2300 along with the male
headers that provide the physical con-
nections to the outside world. Figure
1 is a depiction of the layout of the
male headers.

PREFLIGHT CHECKLIST
Let’s check off what the upgrade

requirements were versus the
RCM2300’s capabilities. The first con-
cern, size, was satisfied by the
RCM2300’s compact form factor. The
relay controller module needed the
ability to keep track of relay closures
and durations. In addition, the relay
controller module had to have a
means of identifying itself to the mas-
ter controller. If the relay controller

has to be moved to another master
controller network on the plant floor,
the relay controller ID will need to be
changed and remembered.

Because the specifications called
for unlimited reads and writes to non-
volatile storage, I considered using
RAMTRON’s ferro-based nonvolatile
serial memories for this, but as good
as that sounds, it adds complexity and
parts to the solution. The RCM2300
has all of the necessary circuitry
onboard to support battery-backed
SRAM operation. I had to add a bat-
tery to the solution to support the
real-time clock anyway. So, with the
battery being a necessary item, the
RAMTRON part was one less part I
needed to add.

By simply attaching a 950-mAh
lithium cell between the RCM2300
VBAT pin and ground, unlimited
read/write nonvolatile storage is
effected and the real-time clock is
implemented. The final requirement
of serial communications was satis-
fied by the RCM2300’s abundance of
serial ports. In addition to the pro-
gramming port, the RCM2300 comes
standard with a serial port configura-
tion capable of two 2-wire interfaces
or one 5-wire interface. The upgrade
uses the services of one of these serial
ports in 2-wire mode for asynchro-
nous communications between the
RCM2300 complex and an external
terminal or personal computer. If the
need arises later, the remaining 2-wire
port can be equipped with a standard
RS-485 converter, and with the help
of a single I/O for transmit/receive
switching, the RCM2300 embedded
complex can become a fully function-
al RS-485 network node.

Basically, the hardware consists of
a simple printed circuit board, a lithi-
um backup battery, the RCM2300,
and an RS-232 converter IC. If you’re
wondering why I included the printed
circuit board as part of the hardware,
you’ll get your answer by studying
Photo 3. What you see is a 28-pin dual
inline arrangement that is designed to
be plugged into the socket of the
microcontroller the RCM2300 com-
plex replaced. This arrangement
allows the RCM2300 embedded com-
puter to access the resources of the

original relay controller via the pinout
of the microcontroller it replaced.

For instance, if pin 1 was an out-
put pin on the original microcon-
troller, All I had to do was assign and
hardwire one of the RCM2300 I/O
pins to the IC socket’s pin 1 and code
it for output in the code. The original
equipment microcontroller had a sin-
gle UART that was pinned for use
with an external RS-232 converter. To
mimic this functionality, I simply
designed the RCM2300 motherboard
to allow one of the RCM2300 serial
ports to interface with the original
UART pins. To go one better, I added
the RS-232 converter IC to the
RCM2300 motherboard in the form of
the Sipex SP233. I chose the SP233
because it does not require the charge
pump capacitors to operate in true
RS-232 mode.

Moving to the topside of the
RCM2300 motherboard (see Photo 4),
you’ll find the female headers that
support the RCM2300 core module
and the 950-mAh lithium backup bat-
tery. This view gives you an idea of
what can take place under the
RCM2300 module. As you can see,
just in case I need them, I added some
SMT resistor pads to accommodate
pullup resistors on the old microcon-
troller input pins, which are mapped
to I/O pins on the RCM2300 module.
Photo 5 is a view of the complete
RCM2300-based embedded upgrade
module with the RCM2300 mounted
on the motherboard.

There’s one more piece of hard-
ware I want to mention before I get
into the development of the final

Photo 4—This is a look under the RCM2300 module.
As a precaution, I added pads for SMD pullup resistors
on the input pins of the original microcontroller. I also
made provisions for the installation of a couple
through-hole MOSFETS to drive high current outputs.
It’s best to have more pads than you need than to
need them and not have them.

Photo 5—I can assemble this upgrade module in
about 15 min.

4 September 2001 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

firmware. Although this hardware
doesn’t have any direct bearing on the
operation of the RCM2300-based
upgrade module, it does have a big
impact on the design of the upgrade
module’s printed circuit board. The
piece of hardware I’m talking about is
the RCM2300 Development Kit. I
used the RCM2300 Development Kit
to baseline the upgrade module’s
design.

As you can see from Photo 6, I
added the optional RS-232 converter
IC to my RCM2300 Development Kit
to allow testing of my firmware with
a known good serial configuration. To
help in firmware development, I
wired the upgrade module’s serial
interface just like it is wired on the
RCM2300 Development Kit. My
RCM2300 Development Kit came
with Dynamic C SE, a RCM2300 core
module, prototype board, program-
ming cable, power supply, a “Getting
Started” manual, and a Rabbit 2000
Easy Reference poster.

FIRMWARE DEVELOPMENT
Using the RCM2300 core module

made the hardware portion of this
upgrade project simple. Fortunately,
the Dynamic C software development
platform does the same for the work-
ing code. I made sure that I wired the
upgrade module in such a way to
allow for quick removal of the
RCM2300 core module from the
upgrade motherboard and the ability
to plug it into the RCM2300
Development Kit board to verify prop-
er operation of my code and the hard-
ware.

An added plus in selecting the
RCM2300 as the upgrade engine is
the ease of coding and debugging the
upgrade firmware. In Photo 5, you can
see the male white-based 2-mm pro-
gramming header. The programming
cable that comes with the RCM2300
Development Kit has an integral RS-
232 converter inline with the pro-
gramming cable itself. This arrange-
ment allows the development plat-
form to be a simple laptop or desktop.
No external EPROM or microcon-
troller programmers or emulators are
required to write, debug, and load
RCM2300 code. All you need is a seri-

al port and a programming cable.
Because I used the schematic to

wire my upgrade module serial ports,
I was able to take advantage of the
sample code that comes with
Dynamic C SE to quickly verify my
RS-232 connectivity with the
RCM2300 attached to the upgrade
module. In fact, I developed 99% of
the code with the RCM2300 core
module mounted on the upgrade
motherboard. I really didn’t miss the
coding, erasing, programming, and
then testing it loops. I also didn’t miss
having to expend funds for external
debugging and emulation hardware,
either.

I’m used to writing all of my code
from scratch. Using Dynamic C SE
was a pleasant experience, in that it is
standard C with extensions for the
RCM2300. If I had problems with syn-
tax or logic, I simply loaded in one of
the sample programs and studied the
code. The built-in debugger also came
in handy, as I could just stop the code,
set my watches, and single step
through the problem areas. The Easy
Reference poster that comes with the
RCM2300 Development Kit also
came in handy a few times, as I had
to determine how to control the sec-
ondary serial port and how to manip-
ulate one of the parallel ports. I was
able to figure it out using the refer-
ence poster, which saved me the pain
of digging through a mass of docu-
mentation.

Another advantage to using the
RCM2300 and Dynamic C SE is that
Dynamic C provides cooperative,

time slice, or preemptive multitask-
ing. In addition to controlling the
activation of relays, the relay con-
troller also monitors a number of con-
trol panel switches. These switches
must be monitored at all times and
switch activations cannot be missed
while the controller is servicing the
relays.

I used costatements to solve the
switch scanning problem. Each
costatement can be equated with a
task. For instance, if there were four
switches that must be monitored in
addition to four relays that must be
controlled, the simplest method to
provide coverage for all of the devices
would be to assign each task to a
costatement code segment. Each
switch would be interrogated and
serviced within its own costatement
segment, as would each relay. The
costatements have internal structures
that keep up with the progress of the
task while yielding to other events

Listing 1—This is really cool stuff! By simply using the costatement feature and some simple logic, I can write
cooperative multitasking code with simple C statements.

while(1)
{

costate
{

waitfor switch_closed();
waitfor activate_relay1();
waitfor (DelaySec(60));

}
costate
{

waitfor (DelaySec(1));
waitfor flash_LED();

}
}

Photo 6—I added this Sipex 232 RS-232 converter IC
to initially test the upgrade module’s serial port design.
The RCM2300 Development Kit has provisions for this
addition. All you have to do is add the parts.

www.circuitcellar.com/online CIRCUIT CELLAR® ONLINE September 2001 5

face for the modem or RS-485 lines
are supplied by a 5-pin header of sol-
der connection directly to the right of
the EDTP symbol on the upgrade
motherboard. Screw terminals on the
modem module allow for quick
installation in the field.

SUCCESS
When the dust cleared, what I

ended up with was a compact, highly
functional, embedded computing sys-
tem capable of keeping time, process-
ing and retaining statistical data, con-
trolling external devices on a timed
basis, and communicating with other
devices by various means. Because the
RCM2300 can be programmed using a
laptop, servicing the upgrade module
firmware in the field becomes a no-
brainer. The customer did not choose
to employ the Internet communica-
tions and programming options
offered by the RCM2300, but if things
change, I’m ready to perform with the
platform I’ve designed.

This particular application of the
RabbitCore module showcases the
advantages of employing the
RabbitCore modules in places where
you would normally put a microcon-
troller or multi-part microprocessor
complex. By employing an off-the-
shelf RCM2300 and Dynamic C, I
saved hours of design and debug time
and was able to bring a reliable solu-
tion to my customer in much less
time than if I had done this in the tra-
ditional way.

Well, it has stopped raining now,
and the sun is trying to poke out of
the clouds. I think I hear a gull calling
my name. Until next time…I

during nonproductive time. For
instance, take a look at Listing 1.

The first costate waits for a switch
to close. Assume that all of the
switch detect and debounce code is
included within the switch_closed
function. If the switch_closed func-
tion in the first costate segment is not
satisfied, the first statement in the
second costate segment is executed.
The code won’t hang at the
DelaySec(1) statement. Instead, it will
jump back to the first unfinished
statement within the first costate seg-
ment, switch_closed.

Let’s assume the switch never
closes in the first costate segment.
One second will eventually pass and
the next waitfor statement in the sec-
ond costate segment will execute.
The LED will be flashed according to
the coding within the flash_LED
statement, and the next unfinished
statement in the first costate segment
(switch_closed) will again be exam-
ined. Again, assuming the switch
never closes, the first statement in
the second costate segment will again
begin to run for 1 s.

As you would logically conclude,
if the switch closed, the
activate_relay1 function would exe-
cute, and upon completion, the first
costate segment would enter a 60-s
delay. The second costate segment
would have the opportunity to exe-
cute the flash_LED function once per
second while the top costate segment
1-min. delay was being observed.

My costate example is simplistic.
Depending on what you wanted to
accomplish, the costate functionality
can be expanded in many other ways.
Costates can among other things be

named, paused, and aborted.
Cofunctions can be intermixed with
costatements for additional function-
ality. Using costatements, I was able
to provide multitasking functionality
to the upgrade module without the
need to do it all from scratch.

LEFT TURN, CLYDE
As I was finishing up the upgrade

module firmware, the customer threw
in an additional requirement. The
upgraded module should be able to
operate standalone and dial up a
remote plant floor master. The
modem hardware was not to be
included with every module, however,
each module should have the capabili-
ty to be attached to the modem hard-
ware. Fortunately, the specification
stated that the RS-485 and modem
functions be mutually exclusive. That
meant that I could use the second
serial port for the modem interface as
well as an RS-485 port.

As of this writing, I did not have
the professional modem boards back
to show you. However, I followed the
same baseline technique I used with
the RCM2300 Development Kit and
the serial circuits on the upgrade
module. I built the development pro-
totype in Photo 7, which allowed me
to connect the Cermetek CH2100
modem directly to a personal comput-
er serial port or the upgrade module
by simply changing the three jumpers.

The Sipex SP233 on the modem
module is there to interface the per-
sonal computer serial port to the
CH2100. The RCM2300-based
upgrade module and the CH2100
don’t need an RS-232 converter
between them. Instead, the RCM2300
and CH2100 use standard TTL levels
to communicate with each other. The
CH2100 is capable of 2400 bps and
uses the standard Hayes AT command
set. The command set responses
replace the hardware modem signals
and, thus, reduce the CH2100 pin
count to eight. This allows the
CH2100 to be directly connected to
microprocessor UARTs with no addi-
tional supporting parts.

Two wires, power, and a phone
jack are all that’s required to place a
data call with the CH2100. The inter-

Photo 7—The 276 part number on the perfboard says
Radio Shack, but the dominant component is a full-
blown Cermetek 2400-bps modem.

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is
embedded-systems design and com-
munications. Fred may be reached at
fred@edtp.com.

6 September 2001 CIRCUIT CELLAR® ONLINE www.circuitcellar.com/online

SOURCES

CH2100 Modem
Cermetek
(408) 752-5000
Fax: (408) 752-5004
www.cermetek.com

RabbitCore RCM2300, Rabbit
2000 microprocessor
Rabbit Semiconductor
(530) 757-8400
Fax: (530) 757-8402
www.rabbitsemiconductor.com

SP233 Transceiver
Sipex Corp.
(978) 667-8700
Fax: (978) 670-9001
www.sipex.com

Circuit Cellar, the Magazine for Computer Applications.
Reprinted by permission. For subscription information,
call (860) 875-2199, subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

