
JenNet-IP LAN/WAN Stack
User Guide

JN-UG-3086

Revision 1.3

15 August 2013

JenNet-IP LAN/WAN Stack
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Contents

About this Manual 11
Organisation 11

Conventions 12

Acronyms and Abbreviations 12

Related Documents 13

Support Resources 13

Trademarks 13

Part I: Concept Information

1. JenNet-IP Overview 17
1.1 JenNet-IP User Documentation 17

1.2 A JenNet-IP System 18
1.2.1 WPAN (Wireless Cluster) 19

1.2.2 LAN 19

1.2.3 Border-Router (WPAN-LAN Router) 19

1.2.4 WAN 19

1.2.5 IP Hosts 20

1.3 Software Architecture and Components 20
1.3.1 Software Overview 20

1.3.2 Software Components (IPv6 Case) 21

1.3.3 Software Components (IPv4 Case) 24

1.4 JenNet-IP LAN/WAN Stack 25
1.4.1 Application Level 26

1.4.2 Network Level 27

1.4.3 Physical/Data Link Level 27

1.5 Essential JenNet-IP Concepts 28
1.5.1 MIBs and MIB Variables 28

1.5.2 Traps 29

1.6 Network Data and Standard MIBs 29

1.7 Application Development 30

1.8 JenNet-IP Browser (Examples) 31
1.8.1 Java Executable 31

1.8.2 Border-Router Firmware 31
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 3

Contents
2. Internet Protocol Concepts 33
2.1 IP Data Packets 33

2.1.1 Connectionless Transport 33

2.1.2 Packet Delivery Reliability 33

2.2 IP Stack 34

2.3 Internet Protocol version 6 (IPv6) 36
2.3.1 IPv6 Addresses 37

2.3.2 IPv6 Address Components 38

2.3.3 IPv6 Address Blocks 38

2.3.4 IPv6 Address Scopes 39

2.3.5 IPv6 Multicast Addresses 39

2.4 UDP Sockets 40

Part II: C JenNet-IP API

3. IP Application Development (C Version) 43
3.1 Overview 43

3.2 JIP Sessions 44

3.3 Initialising a JIP Session 45

3.4 Connecting to a Border-Router (of a WPAN) 45

3.5 Discovering the WPAN 46

3.6 Discovering Nodes and MIBs 46
3.6.1 Node Information 46

3.6.2 MIB Information 47

3.7 Monitoring the WPAN 48

3.8 Remotely Accessing MIBs 48
3.8.1 Reading from MIB Variables 48

3.8.2 Writing to MIB Variables 48

3.8.3 Using JIP Traps on MIB Variables 49

3.9 Protecting Context Data 50

3.10 Persisting Context Data 50
3.10.1 Network Context Data 50

3.10.2 Node Context Data 51

4. C JIP API Functions 53
4.1 JIP Management Functions 53

eJIP_Init 54

eJIP_Connect 55

eJIP_Connect4 56

eJIP_Destroy 57

eJIP_Lock 58
4 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_Unlock 59

eJIP_LockNode 60

eJIP_UnlockNode 61

eJIP_GroupJoin 62

eJIP_GroupLeave 63

4.2 Network Discovery Functions 64
eJIPService_DiscoverNetwork 65

eJIPService_MonitorNetwork 66

eJIPService_MonitorNetworkStop 67

eJIP_GetNodeAddressList 68

psJIP_LookupNode 69

psJIP_LookupMib 70

psJIP_LookupMibId 71

psJIP_LookupVar 72

psJIP_LookupVarIndex 73

eJIP_PrintNetworkContent 74

4.3 Persistent Data Functions 75
eJIPService_PersistXMLSaveNetwork 76

eJIPService_PersistXMLLoadNetwork 77

eJIPService_PersistXMLSaveDefinitions 78

eJIPService_PersistXMLLoadDefinitions 79

4.4 MIB Access Functions 80
eJIP_GetVar 81

eJIP_SetVar 82

eJIP_MulticastSetVar 83

eJIP_TrapVar 85

eJIP_UntrapVar 87

5. C JIP API Structures 89
5.1 tsJIP_Context 89

5.2 tsNetwork 89

5.3 tsNode 90

5.4 tsMib 91

5.5 tsVar 91

5.6 tsTable 93

5.7 tsTableRow 94

5.8 teJIP_VarType 94
5.8.1 teJIP_VarEnable 95

5.8.2 teJIP_ContextType 95

5.9 teJIP_AccessType 96

5.10 teJIP_Security 96
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 5

Contents
Part III: Java JenNet-IP API

6. IP Application Development (Java Version) 99
6.1 Overview 99

6.2 API Organisation (Packages, Interfaces, Classes) 100
6.2.1 com.nxp.jip 100

6.2.2 com.nxp.jip.variables 101

6.2.3 com.nxp.jip.service 101

6.2.4 com.nxp.jip.service.persist 101

6.2.5 com.nxp.jip.service.cache 102

6.2.6 com.nxp.jip.exception 102

6.3 JIP Sessions 102

6.4 Initialisation 103
6.4.1 Creating a JIP Service 103

6.4.2 Creating a JIP Session 104

6.5 Discovering the WPAN 104
6.5.1 Node Information 105

6.5.2 MIB Information 105

6.5.3 MIB Variable Information 106

6.6 Monitoring the WPAN 107

6.7 Accessing MIB Variables 108
6.7.1 Reading from MIB Variables 108

6.7.2 Writing to MIB Variables 108

6.7.3 Using JIP Traps on MIB Variables 109

6.8 Persisting Context Data 110
6.8.1 Network Context Data 110

6.8.2 Node Context Data 110

7. Java Package com.nxp.jip 113
7.1 JIP Interface 113

7.1.1 JIP Interface Fields 113

7.1.2 JIP Interface Methods 114

get (single value) 115

get (table variable) 116

getByIndex 117

set 118

setByIndex 119

multicastSet 120

queryModules 121

queryVariables 122

trap 123

untrap 124

addTrapListener 125
6 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
removeTrapListener 126

setPacketHandler 127

setRetries 128

setTimeout 129

setSleepingDeviceTimeout 130

close 131

7.2 JipValue Interface 132
7.2.1 JipValue Interface Methods 132

getValue 133

getType 134

7.3 ModuleList Interface 135
7.3.1 ModuleList Interface Methods 135

getLastIndex 136

getModules 137

getModulesRemaining 138

7.4 ModuleRecord Interface 139
7.4.1 ModuleRecord Interface Methods 139

getModuleIndex 140

getModuleId 141

getModuleName 142

7.5 Variable Interface 143
7.5.1 Variable Interface Methods 143

getValue 144

getVarType 145

getVarIndex 146

getModuleIndex 147

isDisabled 148

isTable 149

7.6 VariableList Interface 150
7.6.1 VariableList Interface Methods 150

getVariables 151

getVariablesRemaining 152

getModuleIndex 153

7.7 VariableRecord Interface 154
7.7.1 VariableRecord Interface Methods 154

getType 155

getVarIndex 156

getVarName 157

getAccess 158

getSecurity 159

7.8 PacketHandler Interface 160
7.8.1 PacketHandler Interface Methods 160

open 161

close 162

send 163
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 7

Contents
addPacketListener 164

7.9 PacketListener Interface 165
7.9.1 PacketListener Interface Method 165

received 166

7.10 TrapListener Interface 167
7.10.1 TrapListener Interface Method 167

trapUpdate 168

7.11 Classes of com.nxp.jip 169
7.11.1 JIPImpl Class 169

7.11.2 JipTypes Class 169
7.11.2.1 JipTypes.Access 170
7.11.2.2 JipTypes.Security 170
7.11.2.3 JipTypes.Status 170
7.11.2.4 JipTypes.VariableType 171

7.11.3 PacketHandlerIPv4 Class 171

7.11.4 PacketHandlerIPv6 Class 172

8. Java Package com.nxp.jip.variables 173
8.1 JipInteger Class 173

8.2 JipFloat Class 174

8.3 JipDouble Class 175

8.4 JipString Class 176

8.5 JipTable Class 177

8.6 JipBlob Class 178

9. Java Package com.nxp.jip.service 181
9.1 JenNetIPNetwork.NodeDiscoveryListener Interface 181

9.1.1 JenNetIPNetwork.NodeDiscoveryListener Interface Methods 181

nodeAdded 182

nodeRemoved 183

9.2 Service.TableGetListener Interface 184
9.2.1 Service.TableGetListener Interface Method 184

rowAdded 185

9.3 Classes of com.nxp.jip.service 186
9.3.1 JenNetIPNetwork Class 186

9.3.2 Module Class 189

9.3.3 Node Class 190

9.3.4 Service Class 191

9.3.5 VariableInst Class 193

10.Java Package com.nxp.jip.service.persist 197
10.1 XmlPersistence Class 197
8 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Part IV: Appendices

A. JenNet-IP Browser 201
A.1 Browser Functionality 201
A.2 Pre-requisites 201

B. JenNet-IP (JIP) CLI 203
B.1 Commands 204
B.2 Example Usage 205

C. Glossary 213
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 9

Contents
10 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
About this Manual

This manual is the main reference resource in developing applications for devices on
the LAN/WAN side of an NXP JenNet-IP system. It describes the LAN/WAN stack
software over which applications run on these devices. The manual first introduces the
basic principles of a JenNet-IP system and the internet protocols on which JenNet-IP
(JIP) is built. It then describes the Application Programming Interfaces (APIs) that can
be used to develop JenNet-IP applications that run on IP-connected devices such as
PCs, tablets, mobile phones and IP routers. The API resources (functions, network
parameters, enumerations, structures, etc) are fully detailed.

Organisation

The manual is divided into 4 parts:

 Part I: Concept Information comprises 2 chapters providing background
information for JenNet-IP (JIP):

 Chapter 1 introduces JenNet-IP systems.

 Chapter 2 outlines the IP (Internet Protocol) concepts that you will need for
an understanding of JenNet-IP systems.

 Part II: C JenNet-IP API comprises 3 chapters detailing the C JenNet-IP API (or
C JIP API), which can be used to develop applications for an IP Host device in
a JenNet-IP system:

 Chapter 3 details the main tasks to implement in an application using the C
JIP API functions.

 Chapter 4 details the functions of the C JIP API.

 Chapter 5 details the structures of the C JIP API.

 Part III: Java JenNet-IP API comprises 5 chapters detailing the Java JenNet-IP
API (or Java JIP API), which can be used to develop applications for an IP Host
device in a JenNet-IP system:

 Chapter 6 details the main tasks to implement in an application using the
Java JIP API functions.

 Chapter 7 details the Java JIP API com.nxp.jip package.

 Chapter 8 details the Java JIP API com.nxp.jip.variables package.

 Chapter 9 details the Java JIP API com.nxp.jip.service package.

 Chapter 10 details the Java JIP API com.nxp.jip.service.persist package.

Note: JenNet-IP systems are fully introduced in the
JenNet-IP WPAN Stack User Guide (JN-UG-3080),
which also describes application development for the
WPAN (IEEE 802.15.4) side of a JenNet-IP system.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 11

About this Manual
 Part IV: Appendices describes the following miscellaneous topics:

 JenNet-IP Browser

 JenNet-IP Command Line Interface (CLI)

 The key terminology used in JenNet-IP networks

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

API Application Programming Interface

CLI Command Line Interface

ICMP Internet Control Message Protocol

IP Internet Protocol

JenNet Jennic Network

JIP JenNet-IP

LAN Local Area Network

MIB Management Information Base

MLD Multicast Listener Discovery

MTU Maximum Transmission Unit

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
12 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
NVM Non-Volatile Memory

OND Over-Network Download

PAN Personal Area Network

SDK Software Developer’s Kit

SSBL Second-Stage Bootloader

UDP User Datagram Protocol

WAN Wide Area Network

WPAN Wireless Personal Area Network

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

Related Documents

JN-UG-3080 JenNet-IP WPAN Stack User Guide

JN-UG-3089 JenNet-IP EK040 Evaluation Kit User Guide

JN-UG-3093 JN516x-EK001 Evaluation Kit User Guide

JN-AN-1110 JenNet-IP Border Router Application Note

JN-AN-1162 JenNet-IP Smart Home Application Note

Support Resources

To access JN516x support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

For JN514x resources, visit the NXP/Jennic web site: www.jennic.com/support

Trademarks

All trademarks are the property of their respective owners.

“JenNet”, “JenNet-IP” and the tree icon are trademarks of NXP B.V..
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 13

About this Manual
14 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Part I:
Concept Information
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 15

16 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
1. JenNet-IP Overview

This chapter provides an overview of a JenNet-IP system, including the essential
background information for developing applications to be run on devices in the LAN/
WAN part of the system (for example, PCs, tablets, mobile phones and IP routers
which may provide system access from the Internet).

1.1 JenNet-IP User Documentation

The full JenNet-IP user documentation set comprises the following:

If you are new to JenNet-IP, you should first read the introductory chapters of the
JenNet-IP WPAN Stack User Guide (JN-UG-3080) to familiarise yourself with the
necessary concepts. The manual also introduces the NXP JenNet-IP Software
Developer’s Kit (SDK) which contains support software to facilitate application
development for both the WPAN and LAN/WAN sides of a JenNet-IP system.

If you are developing applications for devices in the IP domain, you should then use
this manual (JN-UG-3086) as follows:

 If you are unfamiliar with Internet Protocol concepts, you are advised to study
Chapter 2

 Irrespective of your previous experience, you are advised to read the rest of
this chapter and refer to one of the following during application development:

 For C-based development, refer to Part II: C JenNet-IP API

 For Java-based development, refer to Part III: Java JenNet-IP API

Note: A more complete introduction to JenNet-IP is
provided in the JenNet-IP WPAN Stack User Guide
(JN-UG-3080). The JenNet-IP user documentation is
described below in Section 1.1.

Part Number Document Title Desciption

JN-UG-3080 JenNet-IP WPAN Stack
User Guide

Provides a general introduction to JenNet-IP and
details the software resources for developing applica-
tions that run on devices on the WPAN
(IEEE 802.15.4) side of a JenNet-IP system

JN-UG-3086 JenNet-IP LAN/WAN Stack
User Guide (this manual)

Details the software resources for developing appli-
cations that run on devices on the LAN/WAN side of
a JenNet-IP system

JN-AN-1110 JenNet-IP Border-Router
Application Note

Provides information and software for developing a
custom Border-Router device which interfaces the
WPAN and LAN/WAN sides of a JenNet-IP system

Table 1: JenNet-IP User Documentation
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 17

Chapter 1
JenNet-IP Overview

1.2 A JenNet-IP System

A JenNet-IP system is based on 6LoWPAN (IPv6 over Low power Wireless Personal
Area Networks). It consists of two parts:

 WPAN domain: Contains one or more Wireless Personal Area Networks
(WPANs), also referred to as wireless clusters, that operate using the NXP
JenNet protocol built on top of the IEEE 802.15.4 standard

 LAN/WAN domain: Contains a Local Area Network (LAN), such as an
Ethernet bus, that may be connected to a Wide Area Network (WAN), such as
the Internet, allowing the WPAN(s) to be monitored and controlled via IP

A typical system is illustrated in Figure 1 below.

The main components of a JenNet-IP system (as illustrated in Figure 1) are as follows:

 WPAN: A wireless network operating over JenNet/IEEE 802.15.4 and
containing nodes based around NXP JN51xx wireless microcontrollers

 LAN: A local IP-based bus (e.g. Ethernet) to which the WPANs are connected

 Border-Router (WPAN-LAN Router): A device used to connect a WPAN to
the LAN

 WAN: A wide-range IP-based network (e.g. the Internet) connected to the LAN

 IP Host: A device on a WAN or the LAN with an IP connection to the system -
for example, this may be a PC, tablet or mobile phone

The above components are described in more detail in the sub-sections below.

Figure 1: Typical JenNet-IP System

WAN
(e.g. Internet)

IP Host

IP Host

WPAN

LAN

WPAN

WPAN

Border-Router Border-Router

Border-Router
18 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
1.2.1 WPAN (Wireless Cluster)

A WPAN or ‘wireless cluster’ in a JenNet-IP system is a wireless network that operates
using the NXP JenNet protocol which is built over the industry-standard IEEE 802.15.4
wireless network protocol. Each WPAN contains a single Co-ordinator node and a
number of other nodes, called Routers and End Devices. The Co-ordinator is normally
incorporated in the Border-Router device, described in Section 1.2.3. A wireless node
is based on an NXP JN5168, JN5164, JN5148-J01 or JN5142-J01 microcontroller.

Messages are sent between the wireless nodes of a JenNet-IP system as IPv6
packets which are compressed and embedded in IEEE 802.15.4 frames. The delivery
of a message uses the destination IPv6 address from the embedded IPv6 packet.

1.2.2 LAN

The LAN in a JenNet-IP system connects together the WPANs of the system. It is
typically an Ethernet bus. The bus allows the WPANs to communicate with each other
(send a message from a node in one network to another node in a different network)
by means of IPv6 packets. The LAN may also provide a connection to a WAN, such
as the Internet (and this WAN may provide connections to other JenNet-IP systems
consisting of a LAN and associated WPANs).

1.2.3 Border-Router (WPAN-LAN Router)

The Border-Router is a device used to connect a WPAN to the LAN. It is also
sometimes referred to as an Edge-Router. The Border-Router is usually incorporated
in the same device as the network Co-ordinator.

Within a WPAN, messages are transported as IEEE 802.15.4 frames with
compressed IPv6 packets embedded in their payloads. However, on the LAN they are
transported as uncompressed IPv6 packets encapsulated in the LAN frames (e.g.
Ethernet). The Border-Router must therefore:

 Take an IEEE 802.15.4 frame from its WPAN, extract the compressed IPv6
packet from the frame payload, uncompress the packet and insert it into a
frame for transportation on the LAN.

 Take an encapsulated IPv6 packet from the LAN, extract the packet from the
frame, compress the packet and then insert it into the payload of an IEEE
802.15.4 frame for transportation within the WPAN.

To receive messages destined for its own WPAN, a Border-Router must ‘listen’ on the
LAN for messages addressed to members of its WPAN - for this, the Border-Router
must analyse the destination IPv6 address in each IPv6 packet broadcast on the LAN.

1.2.4 WAN

The LAN may be connected to one or more WANs to allow remote access to the
attached WPAN(s) through IP-based communication. A WAN is typically the Internet,
allowing access from virtually anywhere in the world.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 19

Chapter 1
JenNet-IP Overview

1.2.5 IP Hosts

An IP Host is a device with an IP connection to the system, from which the WPAN(s)
can be accessed - for example, this may be a PC, tablet or mobile phone. It may also
be an intermediary device which interacts with a WPAN and serves web pages to IP
Hosts containing a user interface.

1.3 Software Architecture and Components

This section introduces the software that is used in the different parts of a JenNet-IP
system, first taking a high-level view in Section 1.3.1, and then taking a more detailed
view in Section 1.3.2 (IPv6 case) and Section 1.3.3 (IPv4 case).

1.3.1 Software Overview

The software in a JenNet-IP system runs in three distinct parts of the system:

 Nodes of the WPAN

 Border-Router between the WPAN and LAN/WAN domains

 Devices in the LAN/WAN domain

These divisions are illustrated in the figure below.

Working from right to left in the above diagram:

 WPAN Node: The user application operates over the JenNet-IP WPAN stack,
which communicates with the Border-Router via an IEEE 802.15.4 radio link.

 Border-Router: This device has both LAN/WAN and WPAN interfaces:

 WPAN Interface: This side of the Border-Router runs a JenNet-IP WPAN
stack, which communicates with the equivalent stack on the WPAN nodes
- this side of the Border-Router usually acts as the WPAN Co-ordinator
node

Figure 2: Software Divisions in JenNet-IP System

LAN/WAN Device Border-Router WPAN Node

ApplicationApplicationApplication

JenNet-IP
WPAN Stack

JenNet-IP
LAN/WAN Stack

(OS-based)

LAN/WAN Interface WPAN Interface

JenNet-IP
LAN/WAN Stack
(Linux OS-based)

Serial Connection Application

JenNet-IP
WPAN Stack

IP
v6

 o
r

IP
v4

 C
on

n
ec

tio
n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

20 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
 LAN/WAN Interface: This side of the Border-Router runs a JenNet-IP
LAN/WAN stack, which communicates with the equivalent stack on the
remote IP Host (LAN/WAN device) - this side of the Border-Router must be
a Linux-based device

The two sides of the Border-Router communicate via a serial link.

 LAN/WAN Device: The user application operates over a JenNet-IP LAN/WAN
stack, which is connected to the Border-Router via an IP (IPv6 or IPv4) link.

The above architecture is described in more detail in Section 1.3.2 and Section 1.3.3.

1.3.2 Software Components (IPv6 Case)

This section provides more details of the JenNet-IP software components introduced
in Section 1.3.1, in the case of an IPv6 connection to the IP domain.

The figure below is a more detailed version of Figure 2, showing the contents of the
JenNet-IP stacks (below the applications) and other software components required in
the Border-Router.

Again, working from right to left in the above diagram:

Note: The JenNet-IP software components that are
required in the case of an IPv4 connection to the IP
domain are outlined in Section 1.3.3.

Figure 3: Software Components in JenNet-IP System (IPv6 Case)

LAN/WAN Device Border-Router WPAN Node

ApplicationApplicationApplicationApplication

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

C JIP

UDP

IPv6 - Linux Kernel

PHY

6LoWPANd

C JIP or Java JIP

UDP

IPv6

PHY

LAN/WAN Interface WPAN Interface

IP
v6

 C
o

nn
e

ct
io

n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

Serial Connection
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 21

Chapter 1
JenNet-IP Overview

WPAN Node

The following software runs on the NXP JN514x microcontroller in a node of a WPAN:

 Application: This software is developed using C APIs provided in the JN516x
JenNet-IP SDK (JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051). In
particular, the JenNet-IP Embedded API is needed (described in the JenNet-IP
WPAN Stack User Guide (JN-UG-3080)).

 JenNet-IP WPAN Stack: This software stack is also provided in the JN516x
JenNet-IP SDK (JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051). It
consists of the stack layers indicated in Figure 3 and detailed in the JenNet-IP
WPAN Stack User Guide (JN-UG-3080).

Border-Router

The software that runs on the Border-Router provides the interface between the
WPAN and LAN/WAN domains. The device has an interface to the WPAN and an
interface to the LAN/WAN domain, with a dedicated software stack at each of these
two interfaces:

 Software at WPAN interface: This is similar to the software that runs on a
WPAN node (see above), comprising a user application over the JenNet-IP
WPAN stack, with the addition of a serial protocol that allows internal
communication with the software stack at the LAN/WAN interface (see below).
The WPAN stack on the Border-Router normally provides the services of a Co-
ordinator node for the WPAN.

 Software at LAN/WAN interface: This software allows a LAN/WAN device to
interact with the Border-Router and, in turn, with the WPAN. It comprises:

 Application (optional): This application is optional and, if implemented,
allows the operator to interact with the system via web pages served to a
web browser running on the LAN/WAN device. The application is
developed using the C JenNet-IP API provided in the JN516x JenNet-IP
SDK (JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051), and
described in Part II: C JenNet-IP API. This API allows the development of
an application for any Linux-based platform.

 JenNet-IP LAN/WAN Stack: This software stack includes both JenNet-IP
components and standard Linux OS components, and is described in
Section 1.4. The JenNet-IP application 6LoWPANd implements the serial
protocol which allows internal communication between the Linux kernel
and the application at the WPAN interface. This application is supplied by
NXP (see below) but a custom application can be used to implement this
serial communication.

The JenNet-IP WPAN and LAN/WAN stacks can be implemented within the same
device or in separate devices (connected via a serial link). For example, in the cases
of the JenNet-IP EK040 and JN516x-EK001 Evaluation Kits, the LAN/WAN stack is
implemented in a Linksys router and the WPAN stack is implemented on a JN51xx-
based dongle which plugs into a USB port of the router (the dongle is referred to as
the Border-Router node). The necessary JenNet-IP software components for the LAN/
WAN stack are supplied in the firmware of the Linksys router. If you wish to design
your own Border-Router, you will need to compile 6LoWPANd for your target from the
source code provided in the Application Note JenNet-IP Border-Router (JN-AN-1110)
22 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
or develop your own 6LoWPANd application to allow serial communication between
the two interfaces.

Further software may also be required in the Border-Router, depending on the
features implemented. For example, if the Over Network Download (OND) feature is
to be used then the application FWDISTRIBUTION will be needed. Again, if you wish
to design your own Border-Router, you will need to compile FWDISTRIBUTION for
your target from the source code provided in the Application Note JenNet-IP Border-
Router (JN-AN-1110) or develop your own FWDISTRIBUTION application.

LAN/WAN Device

The following software runs on a LAN/WAN device (an IP Host), such as a PC, tablet
or mobile phone, to allow the WPAN to be monitored and controlled:

 User Application (optional): This software can be used to monitor/control the
WPAN. It can be developed using the C JenNet-IP API, described in Part II: C
JenNet-IP API, or the Java JenNet-IP API, described in Part III: Java JenNet-IP
API. Alternatively, a standard test application known as the JenNet-IP Browser
can be used which is supplied as a Java executable in the JenNet-IP SDK (and
is introduced in Section 1.8.1). This application is not needed if a standard web
browser is used as a user interface which receives web pages served by an
application on the LAN/WAN side of the Border-Router (see above).

 JenNet-IP LAN/WAN Stack: This software stack includes both JenNet-IP
components and standard OS components. The JenNet-IP components are
provided in the JenNet-IP SDK. The stack consists of the layers indicated in
Figure 3 and detailed in Section 1.4.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 23

Chapter 1
JenNet-IP Overview

1.3.3 Software Components (IPv4 Case)

This section provides more details of the JenNet-IP software components introduced
in Section 1.3.1, in the case of an IPv4 connection to the IP domain.

The figure below is a more detailed version of Figure 2, showing the contents of the
JenNet-IP stacks (below the applications) and other software components required in
the Border-Router.

The software depicted in Figure 4 is similar to that described for the IPv6 case in
Section 1.3.2, with the following differences:

 LAN/WAN Device: In the JenNet-IP LAN/WAN stack on this device:

 The UDP layer is replaced by a TCP/UDP layer

 The IPv6 layer is replaced by an IPv4 layer

 Border-Router: In the JenNet-IP LAN/WAN stack at the LAN/WAN interface:

 JIPd is a special application which is supplied in the JenNet-IP SDK and
which implements the JIPv4 protocol over TCP/UDP (JIPv4 encapsulates
JIP packets, including their IPv6 addressing, into either IPv4 UDP
datagrams or an IPv4 TCP stream)

 IPv4 and IPv6 co-exist side-by-side, IPv4 for the connection to the LAN/
WAN domain and IPv6 for the communications with the WPAN (IPv6
packets are embedded in IEEE 802.15.4 frames)

Note: The JenNet-IP software components that are
required in the case of an IPv6 connection to the IP
domain are described in Section 1.3.2.

Figure 4: Software Components in JenNet-IP System (IPv4 Case)

LAN/WAN Device Border-Router WPAN Node

ApplicationApplication

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIPd

TCP/UDP

IPv4

PHY

6LoWPANd

C JIP or Java JIP

TCP/UDP

IPv4

PHY

LAN/WAN Interface WPAN Interface

IP
v4

 C
o

nn
e

ct
io

n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

IPv6 – Linux Kernel

Serial Connection
ApplicationApplication
24 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
1.4 JenNet-IP LAN/WAN Stack

This section provides details of the stack that runs on devices in the LAN/WAN domain
of a JenNet-IP system, including the LAN/WAN devices (IP Hosts) and the LAN/WAN
side of the Border-Router (see Section 1.3).

The diagram in Figure 5 below shows the levels and layers of the JenNet-IP LAN/
WAN stack.

The three basic levels are now detailed in the sub-sections below.

Figure 5: NXP JenNet-IP Stack - LAN/WAN Side

User Application

Physical/Data Link level

Network level

Application level

IP

UDP

JIP

Ethernet or WiFi

Provided by
Operating
System
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 25

Chapter 1
JenNet-IP Overview

1.4.1 Application Level

The Application level provides services for the application processes that wish to
communicate with the devices/nodes in the wireless network. Within the Application
level are the user application and JenNet-IP (or JIP) layer.

User Application

The user application is normally designed to monitor and control remote WPANs via
an IP connection. This manual is concerned with the development of this software.
The application interacts with the network through the JIP layer, which operates purely
on a remote basis but also locally maintains information about a remote WPAN.

JIP

JenNet-IP or JIP is NXP’s proprietary protocol which provides the user application with
access to device functionality. JenNet-IP APIs are provided for this purpose. The JIP
layer allows access to the nodes of a remote WPAN in order to set and retrieve values
in MIBs (Management Information Bases) on the nodes.

The basic concepts which underlie the JIP layer are very similar to the industry-
standard Simple Network Management Protocol (SNMP) in that configurable MIB
variables and useful information can be accessed via a common protocol. Access to
these variables may possibly result in additional actions - for example, setting the RF
channel variable will not only set the value but also result in the channel being
changed, while reading the current DIO pin levels will have no side effect.

The JIP layer also allows ‘traps’ to be associated with variables. A trap is a mechanism
by which a notification event is generated if the associated variable changes. Traps
can be configured/unconfigured for individual variables.

The JIP layer is described in more detail in Section 1.5.

Note: JIP is the default application-level protocol but
developers can alternatively use their own custom UDP-
based protocol, if desired.
26 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
1.4.2 Network Level

The Network level manages communications with the network. Its components are
provided by the Operating System (Linux in the case of the Border-Router).

The following protocols are provided for assembling/disassembling IPv6 packets:

User Datagram Protocol (UDP)

The UDP layer is a simple message-based connectionless protocol. JenNet-IP
packets are implemented as UDP packets embedded in the payloads of IP packets.
Thus, this layer is concerned with constructing/deconstructing UDP packets. An IP-
UDP socket interface is provided to allow packets to be passed to/from the IP layer
(below). The NXP UDP socket interface follows the Berkeley Socket API.

Internet Protocol (IP)

The IP layer provides functionality for delivering packets over a network, using IPv6 or
IPv4 (in both cases, an IPv6 destination address is included in the original JenNet-IP
packet). The layer is responsible for assembling/disassembling IP packets by
inserting/extracting UDP packets, and handling the IP packet headers.

1.4.3 Physical/Data Link Level

The Physical/Data Link level implemented in the LAN/WAN domain depends on the
particular IP transmission medium utilised by the IP Host device - for example, this
medium could be Ethernet or WiFi.

The components of this level are provided by the Operating System (Linux in the case
of the Border-Router).

Note: The JenNet-IP APIs (introduced in Section 1.5)
allow the user application to interact with the UDP and
IP layers. Most operations are performed through
interactions with the UDP layer.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 27

Chapter 1
JenNet-IP Overview

1.5 Essential JenNet-IP Concepts

JenNet-IP or JIP is NXP’s proprietary protocol which provides the user application with
access to device functionality. On the LAN/WAN side of a JenNet-IP system, there are
two associated APIs comprising functions (and associated resources) which facilitate
this access:

 C JenNet-IP API (C JIP API): This API is used to develop applications that will
run on an IP Host device (such as a PC, tablet or mobile phone) or on the LAN/
WAN side of the Border-Router. Use of these functions is described in Part II: C
JenNet-IP API.

 Java JenNet-IP API (Java JIP API): This API is used to develop applications
that will run on an IP Host device (such as a PC, tablet or mobile phone). Use
of these functions is described in Part III: Java JenNet-IP API.

In a JenNet-IP system, data is held on WPAN nodes in one or more Management
Information Bases (MIBs). A MIB comprises a table of local variables and their values
- for example, a MIB on an environment monitoring node may contain variables for
temperature, humidity and wind speed. The functionality to interact with a MIB is
incorporated in the JIP layer of the stack. MIBs are described further in Section 1.5.1.

1.5.1 MIBs and MIB Variables

A MIB (Management Information Base) is a database containing local variables and
their values, held in memory on a wireless node. A MIB allows variables to be collected
into a logical group. Up to 255 MIBs can exist on each node. The JenNet-IP WPAN
stack creates five standard MIBs (described in the JenNet-IP WPAN Stack User Guide
(JN-UG-3080)) and, therefore, the local application can create up to 250 MIBs.

The application on a wireless node can define one or more MIB types, each with a
unique identifier, name and set of variables. A MIB of a particular type can then be
declared and registered with JenNet-IP. Each MIB is given a unique name and handle.

Note: In addition to the above APIs, the JenNet-IP SDK
includes the JenNet-IP CLI (Command Line Interface)
which allows access to JenNet-IP devices (such as
WPAN nodes) from the command line on an IP Host.
The JenNet-IP CLI is described in Appendix B.

Note: JenNet-IP provides high-level functionality that
allows the application to interact with MIB variables. For
application developers who wish to work with JIP and
MIBs at a lower level, the necessary JIP principles are
outlined in an appendix of the JenNet-IP WPAN Stack
User Guide (JN-UG-3080).
28 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
A MIB type (and therefore MIB) can have up to 255 variables. Each variable is
assigned the following:

 Handle

 Name

 Type

 Remote access rights (constant, read-only, read-write)

 ‘Set’ and ‘Get’ callback functions (on wireless node only)

The callback functions are user-defined and called by the stack whenever a request
is received to set or get the value of the variable. A variable can be enabled or disabled
- in the disabled state, it is not possible to set or get the variable’s value.

Note that it is the local application on a WPAN node that defines a MIB type (and the
variables within it) and creates a MIB. However, remote applications (e.g. on an IP
Host device) can send requests to access a MIB and its variables.

A MIB variable can have an associated ‘trap’ to allow automated monitoring of the
variable’s value/state. Traps are described in Section 1.5.2 below.

1.5.2 Traps

Traps are provided by the JIP layer of the stack and are similar to the industry-
standard SNMP traps. A trap is associated with a specific MIB variable on a remote
node (see Section 1.5.1) and is used to monitor the state of the variable. If a trap has
been set on a particular variable, any change in the variable will result in the
generation of a trap notification event to inform the application which set the trap. This
may result from a change in the value or in the enabled state of the MIB variable.

Traps can be globally suspended and resumed by the local application.

1.6 Network Data and Standard MIBs

Each node of a WPAN holds certain information about itself and the network to which
it belongs. This data is stored in five standard MIBs that are created by the JenNet-IP
WPAN stack on the node, which include the Node MIB and the JenNet MIB.

The Node MIB includes variables for:

 IEEE/MAC address

 Node name

 Application version

 Radio transmission power setting

The JenNet MIB includes variables for:

 Network device type of node

 Depth of node in tree

 Number of descendents of node in tree
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 29

Chapter 1
JenNet-IP Overview

 Neighbour table of node

The standard MIBs and their variables are described in the JenNet-IP WPAN Stack
User Guide (JN-UG-3080).

Information held in the standard MIBs on a node can be read by an application on an
IP Host device as described in Section 3.8.1.

1.7 Application Development

The software resources described in this manual can be used to develop an
application which provides user access to a WPAN from a LAN/WAN device (IP Host).
The application runs on the JenNet-IP LAN/WAN stack (described in Section 1.4) on
the LAN/WAN side of the Border-Router or on an LAN/WAN device:

 Border-Router: If implemented, this application would typically serve web
pages to a normal web browser running on a LAN/WAN device, allowing the
user to access the WPAN from the web browser. The application is developed
using the C JIP API, which is provided in the JN516x JenNet-IP SDK
(JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051), and which allows
the development of an application for a Linux-based platform.

 To develop an application of this type using the C JIP API, refer to Part II:
C JenNet-IP API.

 LAN/WAN device: If implemented, this software provides a dedicated interface
for accessing a WPAN. It can be developed using the C JIP API (on a Linux-
based platform) or the Java JIP API provided in the JN516x JenNet-IP SDK
(JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051).

 To develop an application of this type using the C JIP API, refer to Part II:
C JenNet-IP API.

 To develop an application of this type using the Java JIP API, refer to Part
III: Java JenNet-IP API.

Examples of the above applications are provided by NXP, as described below in
Section 1.8.

Note: Generally, to access a WPAN, an application is
only needed for one of the above devices. However, it is
possible to implement applications on both devices,
providing the options of using a normal web browser or
a dedicated interface on the LAN/WAN device.
30 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
1.8 JenNet-IP Browser (Examples)

Examples of the applications described in Section 1.7 are provided by NXP, as
described below. The example applications are both called the JenNet-IP Browser
and allow a user to interact with the WPAN nodes of a JenNet-IP system. Each
application provides a generic engineering interface to the WPAN, allowing MIB
variables on nodes to be inspected and/or edited.

1.8.1 Java Executable

A Java version of the JenNet-IP Browser is supplied with the JenNet-IP software as
an executable that may be run on a LAN/WAN device with an IP connection to the
Border-Router of a WPAN. This is the application that sits above the JenNet-IP LAN/
WAN stack on the LAN/WAN device in Figure 2, Figure 3 and Figure 4. It represents
an example of a test application that a developer may design using the Java JIP API
(described in Part III: Java JenNet-IP API).

The JenNet-IP Browser functionality and the pre-requisites for using the application
are detailed in Appendix A. Use of the application is fully descibed in an online manual
which is provided within the application and is accessed from the Help menu of the
interface.

1.8.2 Border-Router Firmware

A C-version of the JenNet-IP Browser is provided in the firmware of the Linksys and
Buffalo routers used in JenNet-IP demonstration systems (and runs on the router).
This is the optional application that sits above the JenNet-IP LAN/WAN stack in the
Border-Router in Figure 2 and Figure 3, and was developed using the C JIP API
(described in Part II: C JenNet-IP API). It is accessed from a normal web browser
running on the LAN/WAN device. For further information on this application, see
Appendix A. This application is also used as part of the set-up procedure of the
JenNet-IP Smart Home demonstration which is described in the Application Note
JenNet-IP Smart Home (JN-AN-1162).

Note: The C JIP API (described in Chapter 3) can
alternatively be used to develop a similar application for
a Linux-based platform.

Note: In addition to the above JenNet-IP Browser, the
Border-Router firmware includes the JenNet-IP CLI
(Command Line Interface) which allows access to
JenNet-IP devices (such as WPAN nodes) from the
command line on a LAN/WAN device. The JenNet-IP
CLI is described in Appendix B.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 31

Chapter 1
JenNet-IP Overview

32 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
2. Internet Protocol Concepts

This chapter introduces some of the key concepts related to the protocols used on the
Internet and within some wired networks - the Internet protocols. It provides sufficient
information to allow you to understand and configure the IP aspects of a JenNet-IP
system.

Internet protocols are used by computers/servers on the worldwide web, and other
communications networks, to transfer data between each other. The devices in an IP-
based network are referred to as hosts. The transferred data can take many forms -
pure data, documents/graphics, audio (VoIP), video, etc. The data is transported
across an IP network from source to destination in a packet or datagram, which is a
group of data bits comprising header information and payload data.

2.1 IP Data Packets

An IP data packet may need to pass through many IP hosts or networks to reach the
final destination.

2.1.1 Connectionless Transport

IP is a connectionless protocol, which means that no circuit set-up is required before
a packet is sent out - that is, there is no pre-determined path to reach the destination
device. In contrast, the public telephone network is a circuit-switched network which
requires a circuit to be established before a phone call can commence.

The destination device for an IP packet is represented by an IP address in the packet
header. The network hosts have knowledge of the IP addresses of other devices and
networks, and forward the packet to other hosts nearer to the destination device.
Packets between particular source and destination devices may take different routes
through the network(s) at different times, according to local conditions such as traffic
loads and link failures.

2.1.2 Packet Delivery Reliability

IP is an unreliable service based on ‘best effort’ delivery. The network makes no
guarantee about the proper arrival of packets, data corruption, out-of-order delivery,
duplicate arrival, and lost or dropped/discarded packets. The packet header contains
a checksum to ensure that the header is error-free. Received packets with corrupted
headers are discarded immediately (but no notification is sent to the source node to
indicate that a bad packet has been received).

Note: If you are already familiar with the Internet
protocols IPv4 and IPv6, you may decide to skip this
chapter.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 33

Chapter 2
Internet Protocol Concepts

2.2 IP Stack

The creation, transmission and reception of IP packets are handled by an IP software
stack, which runs on each IP network device. The upper layers of the stack are closer
to the user application, while the lower layers translate data into a form that can be
handled by the physical transmission medium (for example, Ethernet).

The layers of the IP stack are illustrated in the figure below.

The above layers of the IP stack are outlined below.

Application Layer

The Application Layer contains user-defined programs as well as services commonly
used by users, such as e-mail (SMTP) and terminal emulation (telnet). For example,
in the case of a manufacturing plant, the user may develop an application for a device
which monitors the state of a piece of equipment (e.g. vibration, temperature, etc).
This application may send its sensor measurements to a central monitoring point
using IP packets created in the Transport Layer of the IP stack (see below).

Transport Layer

The Transport Layer is responsible for delivering data and receiving data deliveries,
as follows:

 Assembling IP packets that contain data to be sent to an application running on
a remote device

 Disassembling IP packets received from a remote device and passing the
extracted data to the relevant local application in the Application Layer

There may be multiple applications running on a device and an individual application
is identified for IP communication purposes by means of a ‘socket’, which is a logical
entity associated with the local IP address and port through which communications
with the application will be conducted (also see Section 2.4). When sending an IP
packet to a remote application, the Transport Layer inserts the source IP address,
destination IP address and destination socket number into the packet header. When

Figure 6: IP Software Stack

Internetworking Layer

Transport Layer

Application Layer

Link Layer
34 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
receiving an IP packet, the Transport Layer identifies the required destination
application through the socket number extracted from the packet header.

Different Transport Layer protocols are available, including UDP and TCP:

 UDP (User Datagram Protocol) is a basic protocol offering connectionless
delivery and the application multiplexing mechanism described above.

 TCP (Transmission Control Protocol) is a more sophisticated protocol which
supports virtual circuits, allowing connection-oriented communication across a
network that uses a packet-based transport mechanism.

TCP is used in many application areas, including web browsing and e-mail transfer.
UDP typically gives higher throughput and shorter latency, and is therefore often used
for real-time multi-media communication where occasional packet loss is acceptable
(for example, IP-TV, IP-telephony, and online computer games). JenNet-IP uses UDP.

Internetworking Layer

The source and destination devices for the transfer of an IP packet may reside in
geographically separate networks, which may also be of different media types. It is the
role of the Internetworking Layer (or more commonly, Internet Layer) to support IP
packet delivery to a different network.

To reach its destination, a packet may have to pass through several intermediate
networks, being relayed along the way by routers. A router is a computer with software
and hardware dedicated to the tasks of routing and forwarding information. A router
can connect two or more networks with different physical interfaces (e.g. Ethernet,
802.11 WLAN, etc).

The Internet Protocol (IP) defines the addressing methods and structures for
datagram encapsulation. The first major addressing structure was defined in Internet
Protocol version 4 (IPv4), and this is still the dominant protocol of the Internet. A
successor to IPv4, called IPv6, is rapidly being deployed and is likely to take over as
the dominant packet transfer protocol. IPv6 is described in Section 2.3.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 35

Chapter 2
Internet Protocol Concepts

Link Layer

The Link Layer specifies how to send information between two points, the connection
between the points being termed a link. A link can be considered as a single source-
to-destination hop - that is, with no switching or routing in-between. The Link Layer
consists of two sub-layers, the Media Access Control (MAC) sub-layer and the
Physical (PHY) sub-layer:

 MAC: This is concerned with controlling access to the physical transmission
medium to ensure that connected devices can transmit and receive
information. The MAC enforces a set of rules which define when a particular
device may transmit - this involve techniques such as token passing, as used
on a token ring, or variations of Carrier Sense Multiple Access (CSMA), used in
Ethernet and wireless systems.

 PHY: This describes the medium and modulation used to carry information (for
example, Ethernet, IEEE 802.11 wireless or, in NXP's JenNet-IP system, IEEE
802.15.4 wireless).

One of the services that the Link Layer must perform is mapping between a device's
IP address and its link layer address used by the PHY and MAC. The mapping function
is dependent on the version of IP used (which defines the IP address format) and also
the media type. For IPv4, the Address Resolution Protocol (ARP) is used, while for
IPv6, the Neighbour Discovery Protocol (NDP) performs a similar function.

2.3 Internet Protocol version 6 (IPv6)

The Internet has so far predominantly used the Internet Protocol version 4 (IPv4). IPv4
uses 32-bit (4-byte) addresses, giving rise to an address space containing 232 or
nearly 4300 million unique IP addresses. Part of this address space is reserved for
special purposes, such as private networks and multi-cast addresses, reducing the
number of addresses available for public Internet use by approximately 34 million.
However, the IPv4 address space is now effectively exhausted and therefore cannot
support the future expansion of the Internet.

Internet Protocol version 6 (IPv6) has, so far, been introduced to a limited extent, and
is destined to supersede IPv4 as a means of avoiding IP address exhaustion.

Some of the features of IPv6 are:

 Conservative extension of IPv4

 New packet format (IPv4 and IPv6 packet headers are significantly different
and therefore not interoperable)

 128-bit addresses, with an enormous increase in address space over that of
32-bit IPv4 addresses

 Little or no change needed to most Transport Layer and Application Layer
protocols in order to operate over IPv6, the exceptions being protocols that
embed network-layer addresses (such as FTP)

 Simplified address assignment and renumbering when changing Internet
Service Providers (ISPs)
36 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
2.3.1 IPv6 Addresses

IPv6 uses 128-bit (16-byte) addresses, giving rise to an address space containing 2128
(or approximately 3.4 x 1038) unique IP addresses - that is more than 3 hundred trillion
trillion trillion addresses (using the American trillion of 1012). It is unimaginable that this
address space will ever be exhausted. The percentage utilisation of this address
space is likely to remain extremely low, even with the rapid expansion of the Internet.
This will allow a more systematic and hierarchical allocation of IP addresses, as well
as more efficient routing.

IPv6 128-bit addresses are normally represented as eight groups of four hexadecimal
digits, where each group is separated by a colon (:). For example:

2001:DB8F:756A:0000:0000:9B67:084C:6112

Any leading zeros in a group of four hex digits may be omitted. Continuing from the
previous example:

2001:DB8F:756A:0:0:9B67:84C:6112

One or more consecutive groups of 0s can be replaced with a double-colon (::). For
example:

2001:DB8F:756A::9B67:84C:6112

Substitution with a double-colon may be performed only once within an address, since
multiple occurrences of the double-colon can be ambiguous. For example, writing the
address 2001:DB84:0:385A:0:0:0:3A6D as 2001:DB84::385A::3A6D, the latter could
represent any one of the following:

2001:DB84:0:0:0:385A:0:3A6D
2001:DB84:0:0:385A:0:0:3A6D
2001:DB84:0:385A:0:0:0:3A6D
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 37

Chapter 2
Internet Protocol Concepts

2.3.2 IPv6 Address Components

A 128-bit IPv6 address consists of two 64-bit parts:

 Address Prefix: This comprises the 64 most significant bits of the address and
identifies the network. This prefix will therefore be the same for all devices in a
network. A number of special prefixes exist (e.g. the link-local prefix - see
Section 2.3.4). The Address Prefix is itself subdivided into two parts:

 Site Prefix: This comprises the 48 most significant bits of the Address
Prefix and is allocated by an Internet Service Provider (ISP) or the
Regional Internet Registry (RIR).

 Subnet ID: This comprises the 16 least significant bits of the Address
Prefix and, as the name suggests, identifies a particular subnet on the
organisation’s site. It is assigned by the local IT administrator.

 Host Interface ID: This comprises the 64 least significant bits of the address
and identifies a particular device in the network. It is normally taken to be the
IEEE (MAC) address of the device (which is itself a universally unique
identifier), with bit 57 inverted.

For full details of the IPv6 addressing scheme, refer to RFC 4291 available from the
IETF (www.ietf.org).

2.3.3 IPv6 Address Blocks

IPv6 addresses are allocated in blocks, where a block contains a numerically
contiguous set of addresses. A block of addresses will be allocated to an
organisation’s network(s). Each block is aligned to a bit boundary of the IPv6 address
space, so the size of a block must be a power of 2.

Figure 7: IPv6 Address Components

X :X :X :X :X :X :X :X

A dd ress
P re fix

H o s t
In te rfa ce ID

S ite
P re fix

S u bn e t
ID
38 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
2.3.4 IPv6 Address Scopes

A block of IPv6 addresses has ‘scope’, which is a 'region' or 'span' in which the
addresses are unique:

 Link-Local Addresses: These addresses are allocated to devices connected
to the same logical link (for example, on the same Ethernet segment). For link-
local addresses, the first ten bits of the Address Prefix are 1111111010. These
addresses are not globally unique and should not be externally exposed.

 Site Network Addresses: These addresses are allocated to devices in a
private network and are used for local unicast communications within the
network. The Address Prefix is, in fact, globally unique and so the addresses
can be exposed externally without the risk of address conflicts.

 Global Network Addresses: These addresses are allocated to devices in a
network that can be accessed externally via the Internet. The Address Prefix is
therefore globally unique.

A device may be allocated IPv6 addresses from more than one of the above scopes.

2.3.5 IPv6 Multicast Addresses

IPv6 supports multicast addresses which allow an IP packet to be targeted at multiple
devices. An IPv6 multicast address is associated with a group of devices. Each device
in a multicast group keeps a local record of the multicast address of the group (note
that a device can be a member of more than one multicast group).

An IP packet containing a multicast address is actually broadcast by the source node
on each of its links (to its neighbours). It is the responsibility of each receiving device
to determine whether it is a member of the group corresponding to the multicast
address in the packet (and therefore whether the packet should be accepted). If the
receiving device is an IP Router, it will also need to pass on the packet, but is able to
do this selectively. For each of its links, an IP Router maintains a list of the groups to
which nodes on the link belong. It can therefore intelligently route a multicast packet
down those links which contain nodes that belong to the relevant group. The extent of
the broadcast is controlled using the ‘scope’ field in the multicast address (see below)
- so, for example, the broadcast may be restricted to the devices within the local site.

All IPv6 multicast addresses contain the prefix FF00::/8. This leading byte is followed
by a byte containing a 4-bit ‘Flags’ value and a 4-bit ‘Scope’ value (see Section 2.3.4
for an introduction to scope). The rest of the address identifies the multicast group.

For more information on the Flags and Scope values, refer to the description of the
Groups module in the JenNet-IP WPAN Stack User Guide (JN-UG-3080). Also refer
to RFC 4291, available from the IETF (www.ietf.org).

Figure 8: IPv6 Multicast Address Components

Prefix (FF) Flags Scope Group ID

8 bits 4 bits 4 bits 112 bits
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 39

Chapter 2
Internet Protocol Concepts

2.4 UDP Sockets

UDP ‘sockets’ streamline the transmission and reception of UDP packets, from the
application’s viewpoint. A socket is a logical entity which is associated with a particular
communications port on the local device. In fact, the socket is bound to a specific IPv6
address (the device may have more than one) and port.

Sockets are particularly useful when receiving UDP packets. The stack will
automatically route a message arriving on a local communications port by passing the
packet to the application via the relevant socket. Packets arriving on ports that are not
bound to sockets are discarded. Thus, the application does not need to be concerned
with the full set of local ports.

In JenNet-IP, the use of sockets is transparent to the application, as they are managed
by the underlying software stack.

Note: To avoid the propagation of a multicast IPv6
packet through the entire Internet, the scope in a
multicast packet should normally be set to ‘site-local’
(0x5). Also, to send a multicast packet from a remote
device on the Internet to a local site, the packet should
normally be unicast to a ‘rendezvous point’ from where it
can be broadcast through the site - the use of a
rendezvous point can be enabled within the Flags value.
40 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Part II:
C JenNet-IP API
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 41

42 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
3. IP Application Development (C Version)

The chapter outlines the coding of a C application that runs on a LAN/WAN device (IP
Host) or on a Border-Router of a JenNet-IP system. This application may typically be
used to remotely access a WPAN from a LAN/WAN device, such as a PC. References
are made in this chapter to the C JenNet-IP API (or C JIP API) functions that you will
need to use in your code.

3.1 Overview

A LAN/WAN device (such as PC, tablet or mobile phone) can be used to interact with
a WPAN of a JenNet-IP system. The device may be located either:

 remotely from the WPAN, as in the case of a lighting system controlled from a
PC in an office in another town, or

 locally to the WPAN, as in the case of a lighting system controlled from a mobile
phone within the same building

The application that facilitates this interaction may run on the LAN/WAN device or on
the Border-Router connected to the WPAN:

 If implemented directly on the LAN/WAN device, the application provides a
dedicated interface for accessing the WPAN

 If implemented on the Border-Router, the application runs on the LAN/WAN
side - for example, the application may serve web pages to the LAN/WAN
device, where they can be displayed in a normal web browser

The C JIP API can be used to develop both types of application, as described in this
chapter.

Note: Details of all the API functions referenced in this
chapter can be found in Chapter 4.

Note: An application to be run on an IP Host device can
alternatively be implemented using the Java JIP API
(described in Part III: Java JenNet-IP API), if the device
is not a Linux-based platform.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 43

Chapter 3
IP Application Development (C Version)

3.2 JIP Sessions

A communication link between the application and a WPAN is logically represented by
a ‘JIP session’. If the application opens simultaneous communication links with
multiple WPANs, multiple JIP sessions will exist concurrently. Within a JIP session,
the application must create and maintain a ‘context data’ structure for the
corresponding WPAN (see Section 5.1). This context data comprises information
about the WPAN, details of the network nodes, and details of the MIBs and MIB
variables that exist on the nodes.

When a JIP session is created, the corresponding context data structure is empty. The
application must then connect to the Border-Router of the target WPAN and discover
the details of the network (nodes, MIBs and MIB variables) in order to fill in the context
data structure.

During the session, the application can then monitor and control the WPAN. Control
is achieved by writing to MIB variables on the nodes. Monitoring can be achieved by
reading the MIB variables or setting up JIP traps to provide automatic notifications
when the variables change.

The function calls required to implement the above access, control and monitoring are
indicated in the rest of this chapter:

 Initialising a JIP session is described in Section 3.3

 Connecting to a Border-Router is described in Section 3.4

 Discovering the WPAN attached to the Border-Router is described in Section
3.5

 Discovering the nodes of the WPAN, including their MIBs and MIB variables, is
described in Section 3.6

 Monitoring the WPAN is described in Section 3.7

 Accessing MIB variables on wireless nodes is described in Section 3.8

 Protecting the context data structure for the WPAN is described in Section 3.9

 Persisting the context data for the WPAN is described in Section 3.10
44 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
3.3 Initialising a JIP Session

Application access to an individual WPAN is implemented in a JIP session for that
network. A JIP session must first be initialised by calling the function eJIP_Init(). In
this function call, a local tsJIP_Context structure (see Section 3.1) must be
specified which will be used to store context data relating to the WPAN (the type of
context data must also be specified to be for a client or server). This structure will also
subsequently be used to identify the session and WPAN. The structure is initially
empty and will be automatically populated during the discovery stages.

3.4 Connecting to a Border-Router (of a WPAN)

Once a JIP session has been initialised for a WPAN (see Section 3.3), a
communication link must be established with the Border-Router of the network. This
link can be an IPv6 connection or an IPv4 connection, depending on the IP version
used by the intervening network. If the application runs on the LAN/WAN side of the
Border-Router itself, an IPv6 connection with the WPAN side of the Border-Router
must be set up (with the ‘Border-Router node’ of the WPAN, which may or may not be
located in a physically separate device).

The functions used to establish these connections are as follows:

 eJIP_Connect() is used to set up an IPv6 connection (UDP)

 eJIP_Connect4() is used to set up an IPv4 connection (UDP or TCP)

Both of the above functions create a socket (associated with the specified IP address
of the Border-Router and a local port) to be used for the communication link.

In both of the above functions, the IPv6 address of the WPAN side of the Border-
Router (normally the Co-ordinator) must be specified since IPv6 addresses are always
used to access nodes of the WPAN (see Note below). Even in the case of an IPv4
connection, the target node of an access is specified using its IPv6 address, which is
inserted in the IPv4 packet along with the payload.

Note: A JIP session created using eJIP_Init() can be
closed using eJIP_Destroy() when the session is no
longer needed. This function will free the IP connection
(see Section 3.4), remove any traps and free memory
space associated with the session.

Note: For an IPv4 connection, if the IPv6 address of the
WPAN side of the Border-Router is not known, an IPv6
address of zero can be specified which indicates that
the true IPv6 address is to be auto-detected.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 45

Chapter 3
IP Application Development (C Version)

3.5 Discovering the WPAN

Once an IP connection has been established to the Border-Router of a WPAN (see
Section 3.4), the application can initiate a ‘discovery’ of the network using the function
eJIPService_DiscoverNetwork(). This function requests the details of the WPAN,
including information on the constituent nodes, the MIBs that exist on each node and
the variables of each MIB. On receiving this information, the function inserts it into the
relevant context data structure for the WPAN, which will then contain a full description
of the WPAN, its nodes and services.

3.6 Discovering Nodes and MIBs

Once a WPAN has been ‘discovered’ (see Section 3.5), information about the
constituent nodes can be obtained locally from the populated context data structure
for the network.

3.6.1 Node Information

The IPv6 addresses of all the nodes in the WPAN can be obtained from the context
data structure using the function eJIP_GetNodeAddressList(). This function returns
the number of nodes in the WPAN and a list of their IPv6 addresses. It is possible to
use this function to produce a node list which is filtered according to Device ID. The
function will allocate memory space (using malloc()) to receive the address list. Once
the function has returned and the application has read the information from this list,
the application should de-allocate this space (using free()) so that the space can be
re-used.

The details of the node with a given IPv6 address can be obtained using the function
psJIP_LookupNode(). This function returns a pointer to the relevant tsNode node
structure (see Section 5.3) from the context data for the WPAN.

The returned information includes the Device ID of the node, the number of MIBs on
the node and a pointer to a list of tsMib structures (see Section 5.4) containing details

Note: The contents of the context data structure for a
WPAN can be output (via the standard output) using the
function eJIP_PrintNetworkContent().

Note: The function sJIP_LookupNode() internally locks
the node structure using the function eJIP_LockNode().
Once the application has finished with this node
structure, it should unlock the structure using
eJIP_UnlockNode().
46 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
of the MIBs. Device ID is fully described in the JenNet-IP WPAN Stack User Guide
(JN-UG-3080) and is also defined in the Glossary of Appendix C.

Searching the context data for specific MIBs and MIB variables on a node is described
in Section 3.6.2.

3.6.2 MIB Information

Four functions are provided for investigating the MIBs on a node:

 psJIP_LookupMib() can be used to determine whether a MIB with a given
name exists on a particular node. The function searches the relevant node
information in the locally held context data for the WPAN. If a MIB with the
required name is found, the function returns a pointer to the tsMib structure for
the MIB. The function can be called again to resume the search from the next
MIB in the list of MIBs on the node, in case there are multiple MIBs with the
same name.

 psJIP_LookupMibID() can be used to determine whether a MIB with a given
MIB ID exists on a particular node. The function searches the relevant node
information in the locally held context data for the WPAN. If a MIB with the
required ID is found, the function returns a pointer to the tsMib structure for
the MIB. The function can be called again to resume the search from the next
MIB in the list of MIBs on the node, in case there are multiple MIBs with the
same ID.

 psJIP_LookupVar() can be used to determine whether a variable with a given
name exists in a particular MIB on a node. The function searches the relevant
node and MIB information in the locally held context data for the WPAN. If a
MIB variable with the required name is found, the function returns a a pointer to
the tsVar structure for the variable (see Section 5.5). The function can be
called again to resume the search from the next variable in the list of MIB
variables, in case there are multiple variables with the same name in the MIB.

 psJIP_LookupVarIndex() can be used to determine whether a variable with a
given index value exists in a particular MIB on a node. The function searches
the relevant node and MIB information in the locally held context data for the
WPAN. If a MIB variable with the required index value is found, the function
returns a a pointer to the tsVar structure for the variable (see Section 5.5).

Note: Functions are provided for remotely accessing
MIBs and MIB variables on the nodes of a WPAN. This
access is described in Section 3.8.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 47

Chapter 3
IP Application Development (C Version)

3.7 Monitoring the WPAN

A WPAN can be monitored for changes such as a node joining or leaving the network,
or moving (to a new parent) within the network. This monitoring is initiated using the
function eJIPService_MonitorNetwork() which launches a new ‘network monitor’
thread that will notify the application of changes in the network by invoking a user-
defined callback function. The callback function prototype is detailed in the description
of eJIPService_MonitorNetwork() in Section 4.2.

3.8 Remotely Accessing MIBs

The MIB variables on a WPAN node may need to be remotely accessed from a LAN/
WAN device in order to read from or write to the variables. In addition, JIP traps can
be configured on a MIB variable in order to provide automatic notifications when the
variable changes. These types of access are described in the sub-sections below.

3.8.1 Reading from MIB Variables

A request to read the current data from a particular MIB variable on a WPAN node can
be submitted using the function eJIP_GetVar(). The target variable is specified using
the tsVar structure (see Section 5.5) which corresponds to the MIB variable in the
local context data structure. When a response is received containing the read data,
the function will update this local tsVar structure with the new data.

3.8.2 Writing to MIB Variables

A request to write data to a particular MIB variable on a WPAN node can be submitted
using the using the function eJIP_SetVar(). The target variable is specified using the
tsVar structure (see Section 5.5) which corresponds to the MIB variable in the local
context data structure. When a response is received, if the write was successful then
the function will update the local tsVar structure with the new data.

Alternatively, the function eJIP_MulticastSetVar() can be used to send a write
request to multiple nodes in order to update the same MIB variable on these nodes.
The request will be received by all nodes in the WPAN but only implemented on nodes
in the multicast group with the specified IPv6 multicast address. The target variable is
identified in the function call by specifying the relevant tsVar structure for any node
which belongs to the relevant multicast group. No responses are issued by the
recipient nodes and the function returns immediately after sending the request. The

Note 1: The user-defined callback function is called
within the context of the ‘network monitor’ thread.

Note 2: Once monitoring has been started as described
above, it can subsequently be stopped using the
function eJIPService_MonitorNetworkStop().
48 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
locally held context data for the relevant WPAN is not updated with the new data for
this variable and so this context data will become desynchronised with the data on the
nodes (unless the application takes steps to maintain synchronisation).

3.8.3 Using JIP Traps on MIB Variables

The application on a LAN/WAN device or the Border-Router can set up a JIP trap on
a MIB variable on a WPAN node. This results in the automatic generation of a
notification to the application when the MIB variable on the node is changed in some
way.

A JIP trap can be remotely configured on a MIB variable using the function
eJIP_TrapVar(). The relevant variable is specified using the tsVar structure (see
Section 5.5) which corresponds to the MIB variable in the local context data structure.
A user-defined callback function must also be specified which will be invoked to
handle a trap notification when it is generated. The callback function prototype is
detailed in the description of eJIP_TrapVar() in Section 4.4. Each trap notification is
handled in its own ‘trap’ thread, in which the callback function is called. During
execution of the callback function, the relevant context data structure is automatically
protected by a mutex (see Section 3.9).

The trap configured on a MIB variable can be removed using the function
eJIP_UntrapVar().

Note: Neither of the above ‘Set’ functions can be used
to write data to a MIB variable of the type ‘table of
blobs’.

Caution 1: The application must be designed such that
its own data structures are thread-safe within a ‘trap’
thread (see above).

Caution 2: A trap that has been configured on a MIB
variable is not guaranteed to be generated when a
change in the variable occurs.

Note: As an alternative to the above, the application on
the device can use the function eJIP_GroupJoin() to
enrol itself into a multicast group to which trap
notifications from a remote MIB variable are sent (these
traps are set up on the remote node). In this case, the
received trap notifications are processed by the handler
specified in the local tsVar structure for the variable.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 49

Chapter 3
IP Application Development (C Version)

3.9 Protecting Context Data

During a JIP session, there may be critical sections of code during which the context
data for the WPAN must not be modified by any other thread. In order to protect the
context data structure in these circumstances, a mutex can be applied to the structure
using the function eJIP_Lock(). This will prevent the structure from being changed by
other threads. The mutex can be removed using the function eJIP_Unlock(), allowing
other threads to modify the structure.

The tsNode structure (within the context data structure) for a particular node can also
be protected by a mutex to prevent other threads from modifying the structure. This
mutex is applied using the function eJIP_LockNode() and removed using the function
eJIP_UnlockNode(). Note that eJIP_LockNode() offers two possible outcomes when
the structure cannot be locked (e.g. because it is already locked by another thread) -
that is, either to return immediately without applying the mutex or to suspend the
thread in which the function was called until the mutex can be applied.

3.10 Persisting Context Data

The context data which reflects the composition of a remote WPAN can be preserved
in Non-Volatile Memory (NVM) so that it is still available following a break in execution
of the application (e.g. due to a power outage or power cycle). For example, on a PC,
the NVM used may be the hard disk.

For the purpose of persisting context data in this way, this data is treated in two parts:

 Network context data comprising basic information about the composition of
the network, including the IPv6 addresses and Device IDs of the nodes in the
network - see Section 3.10.1

 Node context data which defines the MIBs that reside on nodes with different
Device IDs in the network - see Section 3.10.2

3.10.1 Network Context Data

Network context data can be saved to NVM at any time using the function
eJIPService_PersistXMLSaveNetwork(). This function saves the IPv6 addresses
and Device IDs of the nodes in the network (from the tsJIP_Context structure). The
data is written to an XML file and the name (or full path) of this file must be specified.

The saved context data can be retrieved at any time using the function
eJIPService_PersistXMLLoadNetwork(). This function reads the relevant XML file
and inserts the read data into the context data structure held in RAM. Alternatively, in
the future, the function may also be used to retrieve this network context data from an
XML file held on a web server, for which a URL must be specified.
50 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
3.10.2 Node Context Data

Node context data can be saved to NVM at any time using the function
eJIPService_PersistXMLSaveDefinitions(). This function saves information (from
the specified tsJIP_Context structure) concerning the MIBs and associated
variables that reside on nodes of each Device ID in the network. Note that the data
stored in the MIB variables is not saved. The data is written to an XML file and the
name (or full path) of this file must be specified.

The saved context data can be retrieved at any time using the function
eJIPService_PersistXMLLoadDefinitions(). This function reads the relevant XML
file and the read data is held internally to allow the subsequent rapid discovery of
nodes. Alternatively, in the future, this function may also be used to retrieve this node
context data from an XML file held on a web server, for which a URL must be specified.

Use of these functions to store and retrieve node context data avoids the need to
rediscover the nodes of a network following a break in execution of the application.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 51

Chapter 3
IP Application Development (C Version)

52 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
4. C JIP API Functions

The C JIP API is used to develop applications which run on an IP host of a JenNet-IP
system. This chapter details the functions of the API. The functions are defined in the
header file jip.h.

The C JIP API functions are divided into the following categories:

 JIP management functions, detailed in Section 4.1

 Network discovery functions, detailed in Section 4.2

 Persistent data functions, detailed in Section 4.3

 MIB access functions, detailed in Section 4.4

4.1 JIP Management Functions

This section describes the JIP management functions that are used in setting up and
managing a JIP session (in which a JenNet-IP WPAN will be ’discovered’ and
interrogated).

The JIP management functions are listed below, along with their page references:

Function Page

eJIP_Init 54

eJIP_Connect 55

eJIP_Connect4 56

eJIP_Destroy 57

eJIP_Lock 58

eJIP_Unlock 59

eJIP_LockNode 60

eJIP_UnlockNode 61

eJIP_GroupJoin 62

eJIP_GroupLeave 63
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 53

Chapter 4
C JIP API Functions

eJIP_Init

Description

This function initialises a JIP session and sets up a structure ready to receive network
context data (during network discovery) - this structure is also used to identify the JIP
session in other function calls. The type of context data must be specified to be for a
client or server - normally, this should be set to ‘client’ (E_JIP_CONTEXT_CLIENT).

Parameters

psJipContext Pointer to structure to receive network context data (see
Section 5.1)

eJIP_ContextType Type of context to initialise (client or server):
E_JIP_CONTEXT_CLIENT
E_JIP_CONTEXT_SERVER

Returns

E_JIP_OK

teJIP_Status eJIP_Init(tsJIP_Context *psJipContext,
teJIP_ContextType eJIP_ContextType);
54 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_Connect

Description

This function is used to establish an IPv6 connection to the JenNet-IP Border-Router.
The IPv6 address of the WPAN side of the Border-Router must be specified. The
function sets up a UDP socket (associated with the specified IPv6 address and port
number) from which to issue requests to the WPAN connected to the Border-Router.

Parameters

*psJipContext Pointer to network context data structure (set up using
function eJIP_Init())

*pcAddress Pointer to string representing IPv6 address of the WPAN side
of the Border-Router to which connection will be made

iPort Port number for socket (usually JIP_DEFAULT_PORT)

Returns

E_JIP_OK

teJIP_Status eJIP_Connect(
tsJIP_Context *psJipContext,
const char *pcAddress,
const int iPort);

Note: This function must be used in an application which runs
on a device with an IPv6 connection to the Border-Router or
which runs within the Border-Router itself (on the LAN/WAN
side).
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 55

Chapter 4
C JIP API Functions

eJIP_Connect4

Description

This function is used to establish an IPv4 connection to the JenNet-IP Border-Router
with the specified IPv4 address. The function sets up a socket (associated with the
specified IPv4 address and port number) from which to issue requests to the WPAN
connected to the Border-Router. The connection can be configured to use UDP or
TCP packets. The IPv6 address of the WPAN side of the Border-Router must also
be specified or auto-detected (the WPAN side normally acts as the network Co-
ordinator).

Parameters

*psJipContext Pointer to network context data structure (set up using
function eJIP_Init())

*pcIPv4Address Pointer to string representing IPv4 address of Border-Router
to which connection will be made

*pcIPv6Address Pointer to string representing IPv6 address of the WPAN side
of the Border-Router (set to ::0 to auto-detect)

iPort Port number for socket (usually JIP_DEFAULT_PORT)

bTCP Protocol to be used for IPv4 connection (TCP or UDP):
TRUE - TCP
FALSE - UDP

Returns

E_JIP_OK

teJIP_Status eJIP_Connect4(
tsJIP_Context *psJipContext,
const char *pcIPv4Address,
const char *pcIPv6Address,
const int iPort,
const bool_t bTCP);

Note: In subsequent communications sent to the WPAN, the
target node will be specified using its IPv6 address, which will
be inserted in the IPv4 packet along with the payload.
56 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_Destroy

Description

This function terminates a JIP session (initiated using eJIP_Init()), including closing
the IP connection, untrapping MIB variables and freeing all memory related to this
session.

Parameters

*sJipContext Pointer to structure containing network context data for the
JIP session to be closed

Returns

E_JIP_OK

teJIP_Status eJIP_Destroy(tsJIP_Context *psJipContext);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 57

Chapter 4
C JIP API Functions

eJIP_Lock

Description

This function locks the JIP session context using a mutex which prevents other
threads from changing the internal structures associated with the session.

If this function is called by the application (for example, to access the node list) then
the context should be unlocked again when the mutex protection is no longer needed
by the application. The function eJIP_Unlock() is used to unlock the context.

Parameters

*psJipContext Pointer to network context data structure for JIP session (set
up using function eJIP_Init())

Returns

E_JIP_OK

teJIP_Status eJIP_Lock(tsJIP_Context *psJipContext);
58 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_Unlock

Description

This function unlocks the JIP session context which has been previously locked for
the current thread using the eJIP_Lock() function.

Refer to the description of eJIP_Lock() for more information on locking the JIP
session context.

Parameters

psJipContext Pointer to network context data structure for JIP session (set
up using function eJIP_Init())

Returns

E_JIP_OK

teJIP_Status eJIP_Unlock(tsJIP_Context *psJipContext);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 59

Chapter 4
C JIP API Functions

eJIP_LockNode

Description

This function locks the specified node structure (which is part of the JIP session
context) using a mutex which prevents other threads from changing the structure.

If this function is called, the node structure should be unlocked again when the mutex
protection is no longer needed. The function eJIP_UnlockNode() is used to unlock
the structure.

The function provides the option to suspend the thread in which it is called until the
lock can be acquired - in this case, the function will not return until it has the lock.
Alternatively, the function can return immediately if the lock cannot be acquired.

Parameters

*psNode Pointer to node structure to be protected

bWait Indicates whether thread should be suspended until the lock
can be acquired:
TRUE - Suspend thread until structure can be locked
FALSE - Return immediately if structure cannot yet be locked

Returns

E_JIP_OK

E_JIP_ERROR_WOULD_BLOCK (if lock cannot be acquired and bWait=FALSE)

teJIP_Status eJIP_LockNode(tsNode *psNode,
bool_t bWait);
60 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_UnlockNode

Description

This function unlocks a node structure which has been previously locked for the
current thread using the eJIP_LockNode() function.

Refer to the description of eJIP_LockNode() for more information on locking a node
structure.

Parameters

psNode Pointer to node structure to be unlocked

Returns

E_JIP_OK

teJIP_Status eJIP_UnlockNode(tsNode *psNode);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 61

Chapter 4
C JIP API Functions

eJIP_GroupJoin

Description

This function allows the IP host to join the multicast group corresponding to the
specified IPv6 multicast address, so that it can receive trap notifications from a node
sending notifications to this group.

A pointer must also be provided to the JIP context structure that was set up in the call
to eJIP_Init(), where the context type was set for a client.

The IP host can subsequently leave this group using eJIP_GroupLeave().

Parameters

*psJIP_Context Pointer to JIP context structure (context type must be
E_JIP_CONTEXT_CLIENT)

*pcAddress String representing IPv6 multicast address of the group to join

Returns

E_JIP_OK

teJIP_Status eJIP_GroupJoin(tsJIP_Context *psJIP_Context,
const char *pcAddress);
62 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_GroupLeave

Description

This function allows the IP host to leave the multicast group corresponding to the
specified IPv6 multicast address, so that it no longer receives trap notifications from
a node sending notifications to this group.

A pointer must also be provided to the JIP context structure that was set up in the call
to eJIP_Init(), where the context type was set for a client.

The IP host must have previously joined this group using eJIP_GroupJoin().

Parameters

*psJIP_Context Pointer to JIP context structure (context type must be
E_JIP_CONTEXT_CLIENT)

*pcAddress String representing IPv6 multicast address of the group to
leave

Returns

E_JIP_OK

teJIP_Status eJIP_GroupLeave(tsJIP_Context *psJIP_Context,
const char *pcAddress);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 63

Chapter 4
C JIP API Functions

4.2 Network Discovery Functions

This section describes the network discovery functions that are used during a JIP
session to find information about the JenNet-IP WPAN that is connected to a Border-
Router (associated with the session).

The network discovery functions are listed below, along with their page references:

Function Page

eJIPService_DiscoverNetwork 65

eJIPService_MonitorNetwork 66

eJIPService_MonitorNetworkStop 67

eJIP_GetNodeAddressList 68

psJIP_LookupNode 69

psJIP_LookupMib 70

psJIP_LookupMibId 71

psJIP_LookupVar 72

psJIP_LookupVarIndex 73

eJIP_PrintNetworkContent 74
64 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIPService_DiscoverNetwork

Description

This function is used to ‘discover’ the WPAN that is attached to the Border-Router
associated with a JIP session (initiated using eJIP_Init() and identified by the
specified structure). The function can be called only after an IP connection to the
Border-Router has been established using either eJIP_Connect() or
eJIP_Connect4().

The function requests the details of the WPAN, including information on the
constituent nodes, the MIBs that exist on each node and the variables of each MIB.
On receiving this information, the function inserts it into the relevant
tsJIP_Context, tsNode, tsMib and tsVar structures.

This is a blocking function and may take several seconds to return. Once it has
completed, the tsJIP_Context structure contains a full description of the WPAN,
its nodes and services.

Parameters

*psJipContext Pointer to structure to receive network context data for the
discovered WPAN (see Section 5.1)

Returns

E_JIP_OK

teJIP_Status eJIPService_DiscoverNetwork(
tsJIP_Context *psJipContext);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 65

Chapter 4
C JIP API Functions

eJIPService_MonitorNetwork

Description

This function is used to start monitoring the WPAN associated with a JIP session
(initiated using eJIP_Init() and identified by the specified structure). Monitoring
involves detecting and reporting a change such as a node joining or leaving the
network, or moving (to a new parent) within the network.

The function will spawn a new thread, the ‘network monitor’ thread, which will notify
the application of changes in the network by invoking the specified user-defined
callback function (the callback function is called in this thread’s context). The
application must not perform blocking operations in this thread.

The prototype of the callback function is as follows:

typedef void(*tprCbNetworkChange)(teJIP_NetworkChangeEvent eEvent,
 struct _tsNode *psNode);

where eEvent indicates the nature of the change and psNode points to the structure
(within the JIP context data) for the node on which the change has taken place. Note
that this node structure is locked to the network context data structure for the WPAN.

Parameters

*psJipContext Pointer to structure containing network context data for WPAN
to be monitored (see Section 5.1)

*prCbNetworkChange Pointer to a user-defined callback function to generate change
notifications to the application

Returns

E_JIP_OK

teJIP_Status eJIPService_MonitorNetwork(
tsJIP_Context *psJipContext,
tprCbNetworkChange prCbNetworkChange);
66 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIPService_MonitorNetworkStop

Description

This function is used to stop monitoring of the specified WPAN (where the monitoring
was previously started using eJIPService_MonitorNetwork()).

The function will destroy the associated ‘network monitor’ thread.

Parameters

*psJipContext Pointer to structure containing network context data for WPAN
for which monitoring is to be stopped (see Section 5.1)

Returns

E_JIP_OK

teJIP_Status eJIPService_MonitorNetworkStop(
tsJIP_Context *psJipContext);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 67

Chapter 4
C JIP API Functions

eJIP_GetNodeAddressList

Description

This function can be used to obtain a list of the IPv6 addresses of the nodes in the
WPAN associated with a JIP session (identified by the specified context data
structure). The function can only be called once the network has been discovered
(using the function eJIPService_DiscoverNetwork()). The addresses are obtained
from the context data structure.

The obtained node list can be filtered according to a specified Device ID - for
example, so that it contains only nodes that are lamps. Filtering can be disabled (so
that all nodes are listed) using the enumeration JIP_DEVICE_ID_ALL. Device ID is
descibed in the JenNet-IP WPAN Stack User Guide (JN-UG-3080).

A pointer must be provided to a location that will receive a pointer to the memory
space that will receive the list. The function will ‘malloc’ the required memory space
(according the the number of nodes in the network). Once the function has returned,
the application should read the information from the list and then free the
corresponding memory space (using free()) so that this space can be re-used.

The obtained node list is only a snapshot of the current state of the WPAN. The
function may be called again after the network has been re-discovered or monitoring
has indicated a change in the network.

Parameters

*psJipContext Pointer to structure network context data structure for the
WPAN (see Section 5.1)

u32DeviceIdFilter Device ID with which to filter list of nodes or
JIP_DEVICE_ID_ALL to indicate no filtering

*ppsAddresses Pointer to a location to receive a pointer to the obtained list of
the IPv6 addresses

*pu32NumAddresses Pointer to a location to receive number of IPv6 addresses in
the list

Returns

E_JIP_OK

teJIP_Status eJIP_GetNodeAddressList(
tsJIP_Context *psJipContext,
const uint32_t u32DeviceIdFilter,
tsJIPAddress **ppsAddresses,
uint32_t *pu32NumAddresses);
68 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
psJIP_LookupNode

Description

This function can be used to obtain a pointer to information about the node with the
specified IPv6 address (if the node exists in the specified WPAN). The function
searches the node list which is embedded in the specified network context data
structure and returns a pointer to the relevant node structure.

The function must only be called after a network discovery has been performed using
the function eJIPService_DiscoverNetwork().

psJIP_LookupNode() internally locks the relevant node structure using the function
eJIP_LockNode(). Once the application has finished with the returned node
structure, it should unlock the structure using eJIP_UnlockNode().

Parameters

*psJipContext Pointer to structure network context data structure for the
WPAN (see Section 5.1)

 *psAddress Pointer to structure containing the IPv6 address of the node of
interest

Returns

Pointer to tsNode structure containing the requested node information (see Section
5.3) - if the specified node cannot be found, a null pointer is returned.

tsNode* psJIP_LookupNode(
tsJIP_Context *psJipContext,
tsJIPAddress *psAddress);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 69

Chapter 4
C JIP API Functions

psJIP_LookupMib

Description

This function can be used to determine whether the specified node of a WPAN has
a MIB with the specified name. The function searches the node’s MIB information
held locally in the network context data structure for the WPAN and returns a pointer
to any matching MIB.

The search can be configured to start at any MIB in the MIB list. Once the function
has returned a MIB, it can be called again to resume the search from the next MIB in
the list. In this way, the function can be used to return multiple MIBs with the same
name.

Before calling this function, the application thread must lock the relevant node
structure (within the network context data structure) using the function
eJIP_LockNode() or psJIP_LookupNode(). Once the application has finished with
the node structure, it should unlock the structure using eJIP_UnlockNode().

Parameters

*psNode Pointer to tsNode structure for the node of interest

*psStartMib Pointer to tsMib structure for the MIB at which the search is
to start - a null pointer means to start at the first MIB listed

*pcName Pointer to character string representing the name of the MIB
to search for

Returns

Pointer to a MIB with the given name - if there is no MIB with the name, a null pointer
is returned

tsMib* psJIP_LookupMib(tsNode *psNode,
tsMib *psStartMib,
const char *pcName);
70 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
psJIP_LookupMibId

Description

This function can be used to determine whether the specified node of a WPAN has
a MIB with the specified MIB ID. The function searches the node’s MIB information
held locally in the network context data structure for the WPAN and returns a pointer
to any matching MIB.

The search can be configured to start at any MIB in the MIB list. Once the function
has returned a MIB, it can be called again to resume the search from the next MIB in
the list. In this way, the function can be used to return multiple MIBs with the same ID.

Before calling this function, the application thread must lock the relevant node
structure (within the network context data structure) using the function
eJIP_LockNode() or psJIP_LookupNode(). Once the application has finished with
the node structure, it should unlock the structure using eJIP_UnlockNode().

Parameters

*psNode Pointer to tsNode structure for the node of interest

*psStartMib Pointer to tsMib structure for the MIB at which the search is
to start - a null pointer means to start at the first MIB listed

u32MibId MIB ID to search for

Returns

Pointer to the MIB with the given ID - if there is no MIB with the ID, a null pointer is
returned

tsMib *psJIP_LookupMibId(tsNode *psNode,
tsMib *psStartMib,
uint32_t u32MibId);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 71

Chapter 4
C JIP API Functions

psJIP_LookupVar

Description

This function can be used to determine whether the specified MIB has a variable with
the specified name. The function searches the relevant MIB information held locally
in the network context data structure for the WPAN and returns a pointer to any
matching variable.

The search can be configured to start at any variable in the list of variables for the
MIB. Once the function has returned a variable, it can be called again to resume the
search from the next variable in the list. In this way, the function can be used to return
multiple variables with the same name.

Before calling this function, the application thread must lock the relevant node
structure (within the network context data structure) using the function
eJIP_LockNode() or psJIP_LookupNode(). Once the application has finished with
the node structure, it should unlock the structure using eJIP_UnlockNode().

Parameters

*psMib Pointer to tsMib structure for the MIB of interest

*psStartVar Pointer to tsVar structure for the variable at which the search
is to start - a null pointer means to start at the first variable
listed for the MIB

*pcName Pointer to character string representing the name of the
variable to search for

Returns

Pointer to a variable with the given name - if there is no variable with the name, a null
pointer will be returned

tsVar* psJIP_LookupVar(tsMib *psMib,
tsVar *psStartVar,
const char *pcName);
72 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
psJIP_LookupVarIndex

Description

This function can be used to determine whether the specified MIB has a variable with
the specified index value. The function searches the relevant MIB information held
locally in the network context data structure for the WPAN and returns a pointer to
any matching variable.

Before calling this function, the application thread must lock the relevant node
structure (within the network context data structure) using the function
eJIP_LockNode() or psJIP_LookupNode(). Once the application has finished with
the node structure, it should unlock the structure using eJIP_UnlockNode().

Parameters

*psMib Pointer to tsMib structure for the MIB of interest

u8Index Index value to search for

Returns

Pointer to a variable with the given index value - if there is no variable with this index
value, a null pointer will be returned

tsVar *psJIP_LookupVarIndex(tsMib *psMib,
uint8_t u8Index);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 73

Chapter 4
C JIP API Functions

eJIP_PrintNetworkContent

Description

This function can be used to print the network context data for a WPAN from the
specified tsJIP_Context structure. The function dumps the list of nodes, their
MIBs, variables and variable values through the standard output.

The function must only be called after a network discovery has been performed using
the function eJIPService_DiscoverNetwork().

Parameters

*psJipContext Pointer to structure network context data structure to print
(see Section 5.1)

Returns

E_JIP_OK

teJIP_Status eJIP_PrintNetworkContent(
tsJIP_Context *psJipContext);
74 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
4.3 Persistent Data Functions

This section describes the persistent data functions that are used during a JIP session
to save network context data to Non-Volatile Memory (NVM) and retrieve this data
from NVM (or, in the future, from a web server).

The persistent data functions are listed below, along with their page references:

Function Page

eJIPService_PersistXMLSaveNetwork 76

eJIPService_PersistXMLLoadNetwork 77

eJIPService_PersistXMLSaveDefinitions 78

eJIPService_PersistXMLLoadDefinitions 79
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 75

Chapter 4
C JIP API Functions

eJIPService_PersistXMLSaveNetwork

Description

This function can be used to save network context data to an XML file in local Non-
Volatile Memory (NVM). This data describes the make-up of the network by including
the IPv6 addresses and Device IDs of all the nodes in the network (other data relating
to the nodes, MIBs and MIB variables can be saved using the function
eJIPService_PersistXMLSaveDefinitions()).

eJIPService_PersistXMLSaveNetwork() can be called just before the end of a JIP
session to preserve context data for future use.

The saved context data can later be retrieved from NVM using the function
eJIPService_PersistXMLLoadNetwork().

Parameters

psJipContext Pointer to network context data structure (see Section 5.1)

*pcFileName Pointer to string containing name (or path) of XML file

Returns

E_JIP_OK

teJIP_Status eJIPService_PersistXMLSaveNetwork(
tsJIP_Context *psJipContext,
const char *pcFileName);
76 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIPService_PersistXMLLoadNetwork

Description

This function can be used to load into memory the contents of a network context XML
file, which may have been previously saved to local NVM using the function
eJIPService_PersistXMLSaveNetwork(). Alternatively, in the future, this file may
reside on a web server (for which a URL must be provided).

The retrieved context data is inserted into the tsJIP_Context structure.

The function can be called after a JIP session has been opened using eJIP_Init() if
context data has been saved from a previous session for the relevant WPAN. In this
case, the function should be called only after the node context data has been loaded
using eJIPService_PersistXMLLoadDefinitions().

Parameters

psJipContext Pointer to network context data structure (see Section 5.1)

*pcFileName Pointer to string containing name (or path) of XML file

Returns

E_JIP_OK

teJIP_Status eJIPService_PersistXMLLoadNetwork(
tsJIP_Context *psJipContext,
const char *pcFileName);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 77

Chapter 4
C JIP API Functions

eJIPService_PersistXMLSaveDefinitions

Description

This function can be used to save node context data to an XML file in local Non-
Volatile Memory (NVM). This data defines the Device IDs of the nodes of a network,
including the MIBs (and MIB variables) that reside on the nodes with each Device ID.

Note that only the definitions are saved, the MIB variable values are not saved.

The function can be called just before the end of a JIP session to preserve context
data for future use.

The saved context data can later be retrieved from NVM using the function
eJIPService_PersistXMLLoadDefinitions().

Parameters

psJipContext Pointer to network context data structure (see Section 5.1)

*pcFileName Pointer to string containing name (or path) of XML file

Returns

E_JIP_OK

teJIP_Status eJIPService_PersistXMLSaveDefinitions(
tsJIP_Context *psJipContext,
const char *pcFileName);
78 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIPService_PersistXMLLoadDefinitions

Description

This function can used to load into memory the contents of a node context XML file,
which may have been previously saved to NVM using the function
eJIPService_PersistXMLSaveDefinitions(). Alternatively, in the future, this file
may reside on a web server (for which a URL must be provided).

The retrieved context data is held internally to allow the rapid discovery of nodes.

The function can be called after a JIP session has been opened using eJIP_Init() if
context data has been saved from a previous session for the relevant WPAN. In this
case, the function should be called before the network context data is loaded using
eJIPService_PersistXMLLoadNetwork() or the network is discovered using
eJIPService_DiscoverNetwork().

Parameters

psJipContext Pointer to network context data structure (see Section 5.1)

*pcFileName Pointer to string containing name (or path) of XML file

Returns

E_JIP_OK

teJIP_Status eJIPService_PersistXMLLoadDefinitions(
tsJIP_Context *psJipContext,
const char *pcFileName,
const int iPopulateNetwork);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 79

Chapter 4
C JIP API Functions

4.4 MIB Access Functions

This section describes the functions that are used to access MIBs and their variables,
including the use of JIP traps to monitor MIB variables.

The MIB access functions are listed below, along with its page reference:

Function Page

eJIP_GetVar 81

eJIP_SetVar 82

eJIP_MulticastSetVar 83

eJIP_TrapVar 85

eJIP_UntrapVar 87
80 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_GetVar

Description

This function can be used to send a request to read the specified MIB variable on a
node of a WPAN. The variable is specified using a pointer to a local tsVar structure
(embedded in the tsJIP_Context structure for the WPAN). The specified tsVar
structure is unique to the relevant node and MIB on the node.

The supplied pointer to the relevant tsVar structure could have been obtained using
the function psJIP_LookupVar().

The function is blocking and will not return until a response to the request has been
received or a timeout has occurred. If the request was successful and data is
returned, the pvData pointer of the local tsVar structure will be automatically set to
point to the obtained data.

Parameters

*psJipContext Pointer to network context data structure (see Section 5.1)

*psVar Pointer to local tsVar structure corresponding to MIB
variable to be read (this pointer also identifies the node and
the MIB) (see Section 5.5)

Returns

E_JIP_OK

E_JIP_ERROR_TIMEOUT

E_JIP_ERROR_BAD_MIB_INDEX

E_JIP_ERROR_BAD_VAR_INDEX

E_JIP_ERROR_NO_ACCESS

E_JIP_ERROR_BAD_BUFFER_SIZE

E_JIP_ERROR_WRONG_TYPE

E_JIP_ERROR_DISABLED

E_JIP_ERROR_FAILED

teJIP_Status eJIP_GetVar(tsJIP_Context *psJipContext,
tsVar *psVar);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 81

Chapter 4
C JIP API Functions

eJIP_SetVar

Description

This function can be used to send a request to set the specified MIB variable on a
node of a WPAN. The relevant variable is specified using a pointer to a local tsVar
structure (embedded in the tsJIP_Context structure for the WPAN). The specified
tsVar structure is unique to the relevant node and MIB on the node.

The supplied pointer to the relevant tsVar structure could have been obtained using
the function psJIP_LookupVar().

The function is blocking and will not return until a response to the request has been
received or a timeout has occurred. If the request was successful and the variable
was set, the pvData pointer of the local tsVar structure will be automatically set to
point to the set data.

Note that it is not possible to use this function to set variables of the ‘table of blobs’
data type.

Parameters

*psJipContext Pointer to network context data structure (see Section 5.1)

*psVar Pointer to local tsVar structure corresponding to MIB
variable to be set (this pointer also identifies the node and the
MIB) (see Section 5.5)

*pvNewData Pointer to data to be assigned to the variable

u32Size Data size for variable, in bytes

Returns

E_JIP_OK

E_JIP_ERROR_TIMEOUT

E_JIP_ERROR_BAD_VALUE

E_JIP_ERROR_BAD_MIB_INDEX

E_JIP_ERROR_BAD_VAR_INDEX

E_JIP_ERROR_NO_ACCESS

E_JIP_ERROR_BAD_BUFFER_SIZE

E_JIP_ERROR_WRONG_TYPE

E_JIP_ERROR_DISABLED

E_JIP_ERROR_FAILED

teJIP_Status eJIP_SetVar(tsJIP_Context *psJipContext,
tsVar *psVar,
void *pvNewData,
uint32_t u32Size);
82 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_MulticastSetVar

Description

This function can be used to send a request to set the specified MIB variable on
multiple nodes of a WPAN. The target nodes are members of the multicast group
corresponding to the specified IPv6 multicast address. The relevant variable is
specified using a pointer to a local tsVar structure (embedded in the
tsJIP_Context structure for the WPAN). The particular tsVar structure specified
can correspond to any node which contains the relevant MIB and variable.

The use of an IPv6 multicast address in this type of update means that the maximum
number of IP hops to the WPAN must be specified. This is a standard IPv6 socket
parameter - it must be set to a minimum value of 2 in order to traverse the Border-
Router and to not more than the maximum legal value of 255.

The network interface used to send this request is specified through the element
iMulticastInterface of the supplied tsJIP_Context structure (the default
interface is ‘tun0’). Changing this value for each call to the function allows an
application to multicast on multiple interfaces. The element
iMulticastSendCount of the same structure specifies the number of requests
that will be sent for each call of this function (the default value is 2).

On receiving the request, a node will carry out the request only if the node is a
member of the group corresponding to the specified multicast address (and contains
the relevant MIB and variable).

The function is non-blocking, since no responses are received from the target nodes
of a multicast.

Note that it is not possible to use this function to set variables of the ‘table of blobs’
data type.

teJIP_Status eJIP_MulticastSetVar(
tsJIP_Context *psJipContext,
tsVar *psVar,
void *pvNewData,
uint32_t u32Size,
tsJIPAddress *psAddress,
int iMaxHops);

Caution: When using this function to update a MIB variable
on remote nodes, the locally held context data for the relevant
WPAN is not updated with the new data. Therefore, this
context data will become desynchronised with the data on the
nodes, unless the application is designed to maintain
synchronisation in some way (e.g. using eJIP_GetVar()).
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 83

Chapter 4
C JIP API Functions

Parameters

*psJipContext Pointer to network context data structure (see Section 5.1)

*psVar Pointer to any local tsVar structure corresponding to MIB
variable to be set (see Section 5.5)

*pvNewData Pointer to data to be assigned to the variable

u32Size Data size for variable, in bytes

*psAddress Pointer to structure containing IPv6 multicast address and
relevant port number for target nodes

iMaxHops Maximum number of hops to WPAN (must be at least 2 and
must not exceed 255)

Returns

E_JIP_OK
84 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_TrapVar

Description

This function is used to request a MIB variable (on a specific remote node) to be
trapped - that is, for the variable to be monitored and a notification of any change in
the variable to be sent to the local application. The relevant variable is specified using
a pointer to a local tsVar structure (embedded in the tsJIP_Context structure for
the WPAN). The specified tsVar structure is unique to the relevant node and MIB
on the node.

A handle must be specified which will be subsequently used to refer to any trap
notification for the variable. A user-defined callback function must also be provided
which will be used to deal with the trap notification. The prototype for this callback
function is as follows:

typedef void(*tprCbVarTrap)(struct _tsVar *psVar);

where psVar is a pointer to the relevant variable.

The callback function is called in the context of a ‘trap’ thread. The application must
ensure that this callback function is thread-safe from the main application thread.
Every trap notification is handled in its own thread context. When the callback
function is invoked, the relevant node structure (incorporating the MIB and variable)
is automatically locked with eJIP_NodeLock() and unlocked on completion with
eJIP_NodeUnlock().

A MIB variable that has been trapped using this function can be untrapped using the
function eJIP_UntrapVar().

Parameters

*psJipContext Pointer to network context data structure (see Section 5.1)

*psVar Pointer to local tsVar structure corresponding to MIB
variable to be trapped (this pointer also identifies the node and
the MIB) (see Section 5.5)

u8NotificationHandle Handle to be used to refer to trap notifications for this variable

prCbVarTrap Pointer to callback function to be invoked when a trap
notification for this variable is received

teJIP_Status eJIP_TrapVar(
tsJIP_Context *psJipContext,
tsVar *psVar,
uint8_t u8NotificationHandle,
tprCbVarTrap prCbVarTrap);

Caution: A trap set up using this function is not guaranteed to
be generated when a change in the variable occurs.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 85

Chapter 4
C JIP API Functions

Returns

E_JIP_OK
86 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
eJIP_UntrapVar

Description

This function is used to request a MIB variable (on a specific remote node) to be
untrapped - that is, for a previously configured trapping of the variable set up using
eJIP_TrapVar() to be disabled. The relevant variable is specified using a pointer to
a local tsVar structure (embedded in the tsJIP_Context structure for the WPAN).
The specified tsVar structure is unique to the relevant node and MIB on the node.

The handle used to refer to trap notifications for the variable must also be specified.

Parameters

*psJipContext Pointer to network context data structure (see Section 5.1)

*psVar Pointer to local tsVar structure corresponding to MIB
variable to be untrapped (this pointer also identifies the node
and the MIB) (see Section 5.5)

u8NotificationHandle Handle used to refer to trap notifications for this variable

Returns

E_JIP_OK

teJIP_Status eJIP_UntrapVar(
tsJIP_Context *psJipContext,
tsVar *psVar,
uint8_t u8NotificationHandle);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 87

Chapter 4
C JIP API Functions

88 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
5. C JIP API Structures

This chapter details the structures representing datatypes used by the C JIP API,
which is used to develop applications which run on an IP host of a JenNet-IP system.
The structures are defined in the header file jip.h.

5.1 tsJIP_Context

This structure contains all the JIP context data for a ‘discovered’ WPAN as well as
internal data used by JIP. It is at the highest level in the hierarchy of structures for a
WPAN and acts as the top-level handle (or the ‘owner’) of the WPAN.

typedef struct _tsJIP_Context

{

 tsNetwork sNetwork;

 void *pvPriv;

 /* User configurable parameters */

 int iMulticastInterface;

 int iMulticastSendCount;

} tsJIP_Context;

where:

 sNetwork is a structure (see Section 5.2) containing the JIP context data for
the WPAN

 pvPriv is a pointer to internal private data used by JIP

 iMulticastInterface is the index of the network interface from which to
send multicast ‘set variable’ requests using eJIP_MulticastSetVar(). Changing
this value for each call to the above function allows an application to multicast
on multiple interfaces. The default value is 0, corresponding to ‘tun0’.

 iMulticastSendCount is the number of times to send each multicast ‘set
variable’ request following a call to eJIP_MulticastSetVar(). The default value
is 2.

5.2 tsNetwork

This structure contains the JIP context data for a ‘discovered’ WPAN.

typedef struct _tsNetwork

{

 uint32_t u32NumNodes;

 struct _tsJIP_Context *psOwnerContext;

 tsNode *psNodes;

} tsNetwork;
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 89

Chapter 5
C JIP API Structures

where:

 u32NumNodes is the number of nodes in the WPAN

 psOwnerContext is a pointer to the top-level context structure (see Section
5.1) for the relevant WPAN (thus identifying the WPAN)

 psNodes is a pointer to a linked list of tsNode structures (see Section 5.3),
each containing the context data for a node of the WPAN

5.3 tsNode

This structure contains node-specific JIP context data.

typedef struct _tsNode

{

 tsJIPAddress sNode_Address;

 uint32_t u32DeviceId;

 uint32_t u32NumMibs;

 tsMib *psMibs;

 tsLock sLock;

 struct _tsNetwork *psOwnerNetwork;

 struct _tsNode *psNext;

} tsNode;

where:

 sNode_Address is a tsJIPAddress structure (typedef sockaddr_in6)
representing the JIP address of the node (containing the IPv6 address of the
node and port number of the JIP service on the node)

 u32DeviceId is the 32-bit Device ID for the node and is described in the
JenNet-IP WPAN Stack User Guide (JN-UG-3080)

 u32NumMibs is the number of MIBs on the node

 psMibs is a pointer to a linked list of tsMib structures (see Section 5.4), each
containing information about a MIB on the node

 sLock is a structure containing a protective mutex for the node

 psOwnerNetwork is a pointer to the structure (see Section 5.2) containing the
context data for the WPAN to which the node belongs (thus identifying the host
WPAN)

 psNext is a pointer to the structure for the next node in the linked list
90 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
5.4 tsMib

This structure contains information about a MIB on a node.

typedef struct _tsMib

{

 char *pcName;

 uint32_t u32MibId;

 uint8_t u8Index;

 uint32_t u32NumVars;

 tsVar *psVars;

 struct _tsNode *psOwnerNode;

 struct _tsMib *psNext;

} tsMib;

where:

 pcName is a character string representing the name of the MIB

 u32MibId is the identifier of the MIB type

 u8Index is the index of the MIB

 u32NumVars is the number of variables in the MIB

 psVars is a pointer to a linked list of tsVar structures (see Section 5.5), each
containing information on a variable of the MIB

 psOwnerNode is a pointer to the structure (see Section 5.3) for the node to
which the MIB belongs (thus identifying the host node and WPAN)

 psNext is a pointer to the next MIB in the linked list

5.5 tsVar

This structure contains information about a MIB variable.

typedef struct _tsVar

{

 char* pcName;

 uint8_t u8Index;

 uint8_t u8Size;

 teJIP_VarEnable eEnable;

 teJIP_VarType eVarType;

 teJIP_AccessType eAccessType;

 teJIP_Security eSecurity;

 union

 {

 int8_t* pi8Data;

 int16_t* pi16Data;
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 91

Chapter 5
C JIP API Structures

 int32_t* pi32Data;

 int64_t* pi64Data;

 uint8_t* pu8Data;

 uint16_t* pu16Data;

 uint32_t* pu32Data;

 uint64_t* pu64Data;

 float* pfData;

 double* pdData;

 char* cData;

 uint8_t* pbData;

 tsTable* ptData;

 void* pvData;

 };

 tprCbVarGet prCbVarGet;

 tprCbVarSet prCbVarSet;

 uint8_t u8TrapHandle;

 tprCbVarTrap prCbVarTrap;

 struct _tsMib* psOwnerMib;

 struct _tsVar* psNext;

} tsVar;

where:

 pcName is a character string representing the name of the variable

 u8Index is the index of the variable within its MIB

 u8Size is the number of bytes in the blob of data (only used for a variable of
the blob datatype)

 eEnable is used to define whether the variable is enabled or disabled:

 E_JIP_VAR_DISABLED

 E_JIP_VAR_ENABLED

 eVarType is an enumeration (see Section 5.8) indicating the variable type

 eAccessType is an enumeration (Section 5.9) indicating the type of access
allowed to the variable (read or write)

 eSecurity is an enumeration (see Section 5.10) indicating the type of
security applied to the variable

 The union contains pointers for all data types to the data held by the variable -
this is a null pointer until the variable is read using the function eJIP_GetVar()

 pvData is a pointer to the data held by the variable (the pointer should be cast
to the correct type, dependent upon eVarType) - this is a null pointer until the
variable is read using the function eJIP_GetVar()

 prCbVarGet is a pointer to the user-defined callback function that will be
invoked when data is returned as the result of a ‘get variable’ operation. The
callback function must set the appropriate data pointer in the above union to
92 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
point to the received data. This field can be set to NULL (no callback function) if
the application will set this data pointer

 prCbVarSet is a pointer to the user-defined callback function that will be
invoked as the result of a ‘set variable’ operation. This field can be set to NULL
(no callback function) if the application does not need to be notified of the
results of the operation

 u8TrapHandle is a handle associated with the trap for this variable

 prCbVarTrap is a pointer to the registered user-defined callback function
which is used to deal with trap notifications for the variable - the callback
function is registered through the function eJIP_TrapVar()

 psOwnerMib is a pointer to the structure (see Section 5.4) for the MIB to which
the variable belongs (thus identifying the host MIB, node and WPAN)

 psNext is a pointer to the next variable in the linked list of variables for the MIB

5.6 tsTable

This structure is used to contain a table which is a MIB variable. In this case, the
pvData field of the tsVar structure (see Section 5.5) points to this table structure.

typedef struct

{

 uint32_t u32NumRows;

 tsTableRow *psRows[];

} tsTable;

where:

 u32NumRows is the total number of rows in the table

 psRows[] is a pointer to an array of pointers to structures, where each
structure corresponds to a row of the table (see Section 5.7) - note that an
empty row has a NULL row pointer
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 93

Chapter 5
C JIP API Structures

5.7 tsTableRow

This structure contains information which allows access to a row of a table which is a
MIB variable. The structure is pointed to by the psRows field of the tsTable structure
(see Section 5.6).

typedef struct _tsTableRow

{

 uint32_t u32Length;

 void *pvData;

} tsTableRow;

where:

 u32Length is the length of a row (in bytes)

 pvData is a pointer to the data of the row of the table

5.8 teJIP_VarType

The following enumerated list contains the possible types for MIB variables.

typedef enum

{

 E_JIP_VAR_TYPE_INT8,

 E_JIP_VAR_TYPE_INT16,

 E_JIP_VAR_TYPE_INT32,

 E_JIP_VAR_TYPE_INT64,

 E_JIP_VAR_TYPE_UINT8,

 E_JIP_VAR_TYPE_UINT16,

 E_JIP_VAR_TYPE_UINT32,

 E_JIP_VAR_TYPE_UINT64,

 E_JIP_VAR_TYPE_FLOAT,

 E_JIP_VAR_TYPE_DOUBLE,

 E_JIP_VAR_TYPE_STRING,

 E_JIP_VAR_TYPE_BLOB,

 E_JIP_VAR_TYPE_TABLE_BLOB

} PACK teJIP_VarType;
94 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
5.8.1 teJIP_VarEnable

The following enumerations are used to define whether a MIB variable is enabled
or disabled.
typedef enum _eJIP_VarEnable

{

 E_JIP_VAR_DISABLED,

 E_JIP_VAR_ENABLED,

} PACK teJIP_VarEnable;

The above enumerations are detailed in the table below.

5.8.2 teJIP_ContextType

The following enumerations are used to indicate the type of context data.

typedef enum _eJIP_Context

{

 E_JIP_CONTEXT_CLIENT,

 E_JIP_CONTEXT_SERVER,

} PACK teJIP_ContextType;

The above enumerations are detailed in the table below.

Enumeration Description

E_JIP_VAR_DISABLED Variable is disabled

E_JIP_VAR_ENABLED Variable is enabled

Enumeration Description

E_JIP_CONTEXT_CLIENT Context data for client (libJIP operating in client mode)

E_JIP_CONTEXT_SERVER Context data for server (libJIP operating in server mode)
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 95

Chapter 5
C JIP API Structures

5.9 teJIP_AccessType

The following enumerations are used to indicate the access type of a parameter.

enum _eJIP_AccessType

{

 E_JIP_ACCESS_TYPE_CONST,

 E_JIP_ACCESS_TYPE_READ_ONLY,

 E_JIP_ACCESS_TYPE_READ_WRITE,

} PACK;

#ifdef WIN32

typedef uint8 teJIP_AccessType;

#else

typedef enum _eJIP_AccessType teJIP_AccessType;

#endif

The above enumerations are detailed in the table below.

5.10 teJIP_Security

Note that JIP-level security is not currently implemented (but JenNet-level security is
available).

typedef enum

{

 E_JIP_SECURITY_NONE /* Security is not implemented */

} PACK teJIP_Security;

Enumeration Description

E_JIP_ACCESS_TYPE_CONST Constant - cannot be changed

E_JIP_ACCESS_TYPE_READ_ONLY Variable is read-only

E_JIP_ACCESS_TYPE_READ_WRITE Variable is read- and write-enabled
96 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Part III:
Java JenNet-IP API
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 97

98 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
6. IP Application Development (Java Version)

The chapter outlines the coding of a Java application that will run on a Linux-based IP
host of a JenNet-IP system. This application may typically be used to remotely access
a WPAN from a LAN/WAN device, such as a PC or mobile phone. References are
made in this chapter to the Java JenNet-IP API (or Java JIP API) methods that you will
need to use in your code.

6.1 Overview

A LAN/WAN device (such as PC, tablet or mobile phone) can be used to interact with
a WPAN of a JenNet-IP system. The device may be located either:

 remotely from the WPAN, as in the case of a lighting system controlled from a
PC in an office in another town, or

 locally to the WPAN, as in the case of a lighting system controlled from a
mobile phone within the same building

The application that facilitates this interaction may run on the LAN/WAN device or on
the Border-Router connected to the WPAN:

 If implemented directly on the LAN/WAN device, the application provides a
dedicated interface for accessing the WPAN

 If implemented on the Border-Router, the application runs on the LAN/WAN
side and serves web pages to the LAN/WAN device, where they can be
displayed in a normal web browser

The Java JIP API can be used to develop an application that will run on a LAN/WAN
device, as described in this chapter.

Note: An application to be run on the Border-Router can
be implemented using the C JIP API (described in Part
II: C JenNet-IP API), which can also be used to develop
an application to be run on a LAN/WAN device.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 99

Chapter 6
IP Application Development (Java Version)

6.2 API Organisation (Packages, Interfaces, Classes)

This section describes the organisation of the Java JIP API in terms of Java packages,
interfaces and classes. The API comprises six Java packages, outlined below.

6.2.1 com.nxp.jip

The com.nxp.jip package provides low-level interfaces for implementing JIP
operations and is detailed in Chapter 7. It contains the following interfaces and
classes:

Interfaces

 JIP

 JipValue

 ModuleList

 ModuleRecord

 Variable

 VariableList

 VariableRecord

 PacketHandler

 PacketListener

 TrapListener

Classes

 JIPImpl

 JipTypes

 PacketHandlerIPv4

 PacketHandlerIPv6

Note: The com.nxp.jip package provides low-level
interfaces for implementing JIP operations while the
com.nxp.jip.service package provides equivalent high-
level interfaces. The latter is therefore easier to use.
100 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
6.2.2 com.nxp.jip.variables

The com.nxp.jip.variables package defines the different MIB variable types and is
detailed in Chapter 8. It contains the following classes:

Classes

 JipInteger

 JipFloat

 JipDouble

 JipString

 JipTable

 JipBlob

6.2.3 com.nxp.jip.service

The com.nxp.jip.service package provides high-level interfaces for implementing JIP
operations and is detailed in Chapter 9. It contains the following interfaces and
classes:

Interfaces

 JenNetIPNetwork.NodeDiscoveryListener

 Service.TableGetListener

Classes

 JenNetIPNetwork

 Module

 Node

 Service

 VariableInst

6.2.4 com.nxp.jip.service.persist

The com.nxp.jip.service.persist package is used for saving and recovering context
data, and is detailed in Chapter 10. It contains the following class:

Class

 XmlPersistence
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 101

Chapter 6
IP Application Development (Java Version)

6.2.5 com.nxp.jip.service.cache

The com.nxp.jip.service.cache package is used for caching context data, but its
details are not required for application development and are therefore not documented
here. It contains the following interface and class:

Interface

 Cache

Class

 SimpleCache

6.2.6 com.nxp.jip.exception

The com.nxp.jip.exception defines the JIP exceptions, but its details are not required
for application development and are therefore not documented here. It contains the
following classes.

Classes

 JipError

 JipException

 JipTimeoutException

6.3 JIP Sessions

A communication link between the application and a WPAN is logically represented by
a ‘JIP session’. If the application opens simultaneous communication links with
multiple WPANs, multiple JIP sessions will exist concurrently. Within a JIP session,
the application must create and maintain ‘context data’ for the corresponding WPAN
(see Section 5.1). This context data comprises information about the WPAN and is
divided into the following two parts:

 General context data about device classes, MIBs and MIB variables (e.g. for
each device class, the MIBs that it supports and the variables of each of these
MIBs) - this data is held by the Service class

 Network-specific context data for the particular WPAN which corresponds to the
JIP session - this data is held by the JenNetIPNetwork class

When a JIP session is created, the corresponding context data is blank. To populate
this context data, the application must do one of the following:

 Connect to the Border-Router of the target WPAN and discover the details of
the WPAN (nodes, MIBs and MIB variables)

 Recover persisted context data which has previously been discovered and
saved to an XML file in non-volatile memory (using the XmlPersistance class)
102 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
During the session, the application can then monitor and control the WPAN. Control
is achieved by writing to MIB variables on the nodes. Monitoring can be achieved by
reading the MIB variables or setting up JIP traps to provide automatic notifications
when the variables change.

The Java methods required to implement the above access, control and monitoring
are indicated in the rest of this chapter:

 Creating a JIP session (including connecting to the Border-Router of a WPAN)
is described in Section 6.4

 Discovering the WPAN is described in Section 6.5

 Monitoring the WPAN is described in Section 6.6

 Accessing MIB variables on wireless nodes is described in Section 6.7

 Persisting the context data for the WPAN is described in Section 6.8

6.4 Initialisation

In order to use the Java JIP API to access a WPAN, a JIP service and then a JIP
session must be created, as described in the sub-sections below.

6.4.1 Creating a JIP Service

First, a local IP connection must be pre-configured that will be used to connect to the
WPAN. This can be an IPv6 connection or an IPv4 connection, depending on the IP
version used by the intervening network. One of the following Java constructors must
first be used to create a suitable packet handler for the connection:

 PacketHandlerIPv6() from the PacketHandlerIPv6 class to create a packet
handler for an IPv6 connection (UDP)

 PacketHandlerIPv4() from the PacketHandlerIPv4 class to create a packet
handler for an IPv4 connection (UDP or TCP)

Both of the above methods create a socket (associated with a local port) to be used
for the communication link.

Using the above packet handler, a JIP implementation instance must now be created
using the JIPImpl() constructor of the JIPImpl class. This instance adds itself as a
‘packet listener’ to the nominated packet handler, so that it will be notified of any
packets received by this handler.

Using the above JIP implementation instance, a JIP service can now be created using
the Service() constructor of the Service class.

The above three calls can be combined, as in the following example:

Service service = new Service(new JIPImpl(new PacketHandlerIPv6()));
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 103

Chapter 6
IP Application Development (Java Version)

6.4.2 Creating a JIP Session

Once a JIP service has been created with the required IP connectivity (IPv6 or IPv4),
the application must create a JIP session which implements the IP connection to the
WPAN.

A JIP session can be started using the createNetwork() method of the Service class,
by specifying the address of the Border-Router for the relevant WPAN. This method
returns a JenNetIPNetwork object which represents the network and subsequent
access to this network is implemented by the JenNetIPNetwork class.

An example of the above call is:

JenNetIPNetwork network = service.createNetwork(new
InetSocketAddress("fd04:bd3:80e8:2:215:8d00:e:6780", 1873));

At this stage, the context data for the session will be blank, but will be automatically
populated during the discovery stages.

6.5 Discovering the WPAN

Once an IP connection has been established to the Border-Router of a WPAN (see
Section 6.4), the application can initiate a ‘discovery’ of the nodes in the attached
WPAN using the method discoverNodes() from the JenNetIPNetwork class. The
discovery results are inserted into a list of nodes, where each node is represented by
an object based on the Node class.

Once the nodes of the WPAN have been ‘discovered’, information about the nodes
can be obtained locally from the node list.

Note: A JIP service and session created as described
above can be closed using the shutdown() method of
the Service class. This call will stop any threads, free
the IP connection, remove any traps and free memory
space associated with the session.

Note: There are two versions of the method
discoverNodes(). One version allows the discovery
results for individual nodes to be reported to a ‘discovery
listener’, based on the interface
JenNetIPNetwork.NodeDiscoveryListener.
104 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
6.5.1 Node Information

Information on the discovered nodes of the WPAN can be extracted (locally) from the
created node list:

 From the JenNetIPNetwork class:

 getDeviceClassList() can be used to obtain a list of the Device IDs that
are present in the network.

 getNodes() can be used to obtain a list of all the nodes with a particular
Device ID in the network.

 getNode() can be used to obtain details of the node with a particular
address.

 From the Node class:

 getDeviceClass() can be used to obtain the Device ID of an individual
node.

 getAddress() can be used to obtain the address of an individual node.

 toString() can be used to obtain a string containing the Device ID and
address of an individual node.

6.5.2 MIB Information

The following methods allow information to be obtained about the MIBs on a node:

 From the JIPImpl class:

 queryModules() can be used to obtain a set of MIB records for a particular
node, where these records contain the names and types of the MIBs. The
obtained records may only represent a subset of the MIBs on the node -
the method can be called multiple times to obtain details of all the MIBs on
the node.

 From the Node class:

 getModules() can be used to obtain a list of all the MIBs on a particular
node. The method searches the relevant node information held locally.

 getModuleByName() can be used to obtain details of the MIB with a given
name on a particular node (if the MIB exists). The method searches the
relevant node information held locally.

 getModuleById() can be used to obtain details of the MIB with a given
MIB ID on a particular node (if the MIB exists). The method searches the
relevant node information held locally.

 getModuleByIndex() can be used to obtain details of the MIB with a given
index on a particular node (if the MIB exists). The method searches the
relevant node information held locally.

 From the ModuleList interface:

 getModules() can be used to obtain a map of the MIB records in the list of
the MIBs on a node, where the records are mapped according to MIB
index.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 105

Chapter 6
IP Application Development (Java Version)

 getLastIndex() and getModulesRemaining() can be used to evaluate
which MIBs are present on the node but do not appear in the list of MIB
records.

 From the ModuleRecord interface:

 getModuleName() can be used to obtain the name of a MIB from its MIB
record

 getModuleId() can be used to obtain the ID of a MIB from its MIB record

 getModuleIndex() can be used to obtain the index of a MIB from its MIB
record

 From the Module class:

 getName() can be used to obtain the name of a particular MIB

 getModuleId() can be used to obtain the ID of a particular MIB

6.5.3 MIB Variable Information

The following methods allow information to be obtained about the variables on a MIB
(note that methods concerned with setting and getting the values of MIB variables are
referenced in Section 6.7):

 From the JIPImpl class:

 queryVariables() can be used to obtain a number of MIB Variable records
from a particular MIB on a particular node.

 From the Module class:

 getVariables() can be used to obtain a list of the variables in a MIB.

 getVariable() can be used to obtain the variable with a particular name or
index within a MIB.

 From the VariableInst class:

 getVariableRecord() can be used to obtain the MIB variable record for a
MIB variable.

 getVarType() can be used to obtain the type of a MIB variable.

 isReadOnly() can be used to determine whether a MIB variable has the
access type READ_ONLY.

 isConstant() can be used to determine whether a MIB variable has the
access type CONST.

 isTable() can be used to determine whether a MIB variable is a table.

 isDisabled() can be used to determine whether a MIB variable is disabled.

 From the JipValue interface:

 getType() can be used to obtain the type of a variable.

 From the Variable interface:

 getModuleIndex() can be used to obtain the index of the MIB which
contains a particular variable.
106 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
 getVarIndex() can be used to obtain the index of a variable (within a MIB).

 getVarType() can be used to obtain the type of a MIB variable.

 isTable() can be used to determine whether a MIB variable is a table.

 isDisabled() can be used to determine whether a MIB variable is disabled.

 From the VariableList interface:

 getModuleIndex() can be used to obtain the index of the MIB which
contains the set of variables indicated in a list of MIB Variable records.

 getVariables() can be used to obtain a map of the records in a list of MIB
Variable records, referenced using the MIB Variable index.

 getVariablesRemaining() can be used to obtain the number of MIB
Variables present in a MIB after the last one reported in the list.

 In all classes of the com.nxp.jip.variables package:

 getType() can be used to obtain the type of a MIB variable.

6.6 Monitoring the WPAN

A WPAN can be monitored for changes such as a node joining or leaving the network,
or moving (to a new parent) within the network. This monitoring is initiated using the
method startMonitoring() from the JenNetIPNetwork class. This method registers a
node discovery listener (which will be notified of discovery events) and starts
monitoring the network for changes (if it is not already being monitored).

The poll-period for monitoring (in milliseconds) can be set or changed at any time
using the method setMonitorInterval() from the same class.

Monitoring can subsequently be stopped using the method stopMonitoring(). If
multiple listeners have been added with startMonitoring(), monitoring will only be
stopped once all listeners have been removed with stopMonitoring().
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 107

Chapter 6
IP Application Development (Java Version)

6.7 Accessing MIB Variables

The MIB variables on a WPAN node may need to be remotely accessed from a LAN/
WAN device in order to read from or write to the variables. In addition, JIP traps can
be configured on a MIB variable in order to provide automatic notifications when the
variable changes. These types of access are described in the sub-sections below.

6.7.1 Reading from MIB Variables

The following methods allow the value of a MIB variable to be read:

 From the JIPImpl class:

 get() can be used to request the value of a variable of a MIB specified by
its ID on a remote node, where the variable may contain a single value or a
table of values (two versions of the method are provided). In the latter
case, certain rows of the table can be requested.

 getByIndex() can be used to request the value of a variable of a MIB
specified by its index on a remote node, where the variable may contain a
single value or a table of values (two versions of the method are provided).
In the latter case, certain rows of the table can be requested.

 From the VariableInst class:

 getValue() can be used to obtain the value of a MIB variable from the
remote node.

 In all classes of the com.nxp.jip.variables package:

 getValue() can be used to obtain the value of a MIB variable from a local
copy obtained using one of the above methods.

6.7.2 Writing to MIB Variables

The following methods allow a MIB variable to be written to:

 From the JIPImpl class:

 set() can be used to write the value of a variable of a MIB specified by its
ID on a remote node, where the variable is a single value.

 setByIndex() can be used to write the value of a variable of a MIB
specified by its index on a remote node, where the variable may contain a
single value.

 From the VariableInst class:

 setValue() can be used to write the value of a MIB variable on the remote
node.

 In all classes of the com.nxp.jip.variables package:

 setValue() can be used to write the value of a MIB variable to a local copy
(which can later be written to the actual variable on the remote node using
one of the above methods).
108 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Alternatively, the method multicastSet() from the JIPImpl class can be used to send
a write request to multiple nodes in order to update the same MIB variable on these
nodes. The request will be received by all nodes in the WPAN but only implemented
on nodes in the multicast group with the specified IPv6 multicast address. No
responses are issued by the recipient nodes and the method returns immediately after
sending the request.

6.7.3 Using JIP Traps on MIB Variables

The application on a LAN/WAN device or the Border-Router can set up a JIP trap on
a MIB variable on a WPAN node. This results in the automatic generation of a
notification to the application when the MIB variable on the node is changed in some
way.

Traps on MIB variables can be implemented in the following ways.

Using Methods of the JIPImpl Class

Traps on a MIB variable can be enabled using the following procedure:

1. A trap listener which will receive all trap notifications can be registered using
the method addTrapListener() from the JIPImpl class (this trap listener can
later be removed using the method removeTrapListener() from the same
class).

2. A JIP trap can then be enabled on a specific MIB variable using the trap()
method from the JIPImpl class (this trap can later be disabled using the
untrap() method from the same class). The node, MIB and variable must be
specified in this method.

Caution: For all the ‘set’ methods of the JIPImpl class,
the locally held context data for the relevant WPAN is
not updated with the new data for the variable and so
this context data will become desynchronised with the
data on the nodes (unless the application takes steps to
maintain synchronisation).

Note: None of the above ‘set’ methods can be used to
write data to a MIB variable of the type ‘table of blobs’.

Caution: A trap that has been configured on a MIB
variable is not guaranteed to be generated when a
change in the variable occurs.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 109

Chapter 6
IP Application Development (Java Version)

Using Methods of the VariableInst Class

Traps on a MIB variable can be enabled in either of the following ways:

 A trap listener to receive trap notifications can be registered for a specific MIB
variable using the method addListener() from the VariableInst class (this trap
listener can later be removed using the method removeListener() from the
same class).

 A JIP trap can be enabled on the MIB variable using the trap() method from the
VariableInst class (this trap can later be disabled using the untrap() method
from the same class). The trap listener to receive the trap notifications for this
variable must be specified as part of the call.

6.8 Persisting Context Data

The context data which reflects the composition of a remote WPAN can be preserved
in Non-Volatile Memory (NVM) so that it is still available following a break in execution
of the application (e.g. due to a power outage or power cycle). For example, on a PC,
the NVM used may be the hard disk.

For the purpose of persisting context data in this way, this data is treated in two parts:

 Network context data comprising basic information about the composition of
the network, including the IPv6 addresses and Device IDs of the nodes in the
network - see Section 6.8.1

 Node context data which defines the MIBs that reside on nodes with different
Device IDs in the network - see Section 6.8.2

The Java methods used in persisting context data are provided by the class
XmlPersistence from the package com.nxp.jip.service.persist.

6.8.1 Network Context Data

Network context data can be saved to NVM at any time using the method
saveNetwork() from the XmlPersistence class. The data is written to an XML file.

The saved context data can be retrieved at any time using the method loadNetwork()
from the XmlPersistence class. This function reads the relevant XML file for the
network.

6.8.2 Node Context Data

Node context data contained in a cache instance can be saved to NVM at any time
using the method saveDefinitions() from the XmlPersistence class. This method
saves information concerning the MIBs and associated variables that reside on nodes
of each Device ID in the network. Note that the data stored in the MIB variables is not
saved. The persisted data is written to an XML file.

The saved context data can be retrieved at any time using the method
loadDefinitions() from the XmlPersistence class. This method reads the relevant
110 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
XML file for the relevant cache instance. The read data is held internally to allow the
subsequent rapid discovery of nodes.

Use of these functions to store and retrieve node context data avoids the need to
rediscover the nodes of a network following a break in execution of the application.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 111

Chapter 6
IP Application Development (Java Version)

112 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7. Java Package com.nxp.jip

This chapter details the Java package com.nxp.jip which is supplied as part of the
Java JIP API. This package consists of the following interfaces:

 JIP - see Section 7.1

 JipValue - see Section 7.2

 ModuleList - see Section 7.3

 ModuleRecord - see Section 7.4

 Variable - see Section 7.5

 VariableList - see Section 7.6

 VariableRecord - see Section 7.7

 PacketHandler - see Section 7.8

 PacketListener - see Section 7.9

 TrapListener - see Section 7.10

The referenced sections detail the methods and fields associated with each interface.
In addition, the classes of the package are detailed in Section 7.11.

7.1 JIP Interface

This section describes the JIP interface.

7.1.1 JIP Interface Fields

The JIP interface fields are listed and described in the table below.

Field Type Description

BUFF_SIZE static int Maximum size (in bytes) of message payload.

DEFAULT_PORT static int Default port number for sending messages to JenNet-IP nodes

Table 2: JIP Interface Fields
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 113

Chapter 7
Java Package com.nxp.jip

7.1.2 JIP Interface Methods

The JIP interface methods are listed below, along with their page references:

Method Page

get (single value) 115

get (table variable) 116

getByIndex 117

set 118

setByIndex 119

multicastSet 120

queryModules 121

queryVariables 122

trap 123

untrap 124

addTrapListener 125

removeTrapListener 126

setPacketHandler 127

setRetries 128

setTimeout 129

setSleepingDeviceTimeout 130

close 131

Some of the above methods contain an optional flags parameter. These methods can
be used with or without this parameter, which may be needed when sending a
message to an End Device. When used, the parameter takes an EnumSet containing
none, either or both of the following MessageFlag enumerations:

Caution: With the exception of the multicast set
method, all JIP interface methods are blocking.
Furthermore, only one can method execute at any one
time. Consequently, a method invocation may block the
current thread for a very long time.

Enumeration Description

USE_SLEEPING_DEVICE_TIMEOUT Allows a longer timeout to be used when transmitting to an
End Device that can sleep. The timeout is set using the
method setSleepingDeviceTimeout().

REQUEST_STAY_AWAKE Allows the ‘stay awake’ flag to be set in the message,
which requests the target End Device to stay awake to
receive further messages. This option is detailed in the
JenNet-IP WPAN Stack User Guide (JN-UG-3080).

Table 3: MessageFlag Enumerations
114 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
get (single value)

Description

This method can be used to request the value of the specified variable of a particular
MIB on the specified node of a WPAN, where the MIB is specified using its identifer.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number which provides access to the MIB variable

moduleId ID of the MIB which contains the variable

varIndex Index of the variable within the MIB

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

Variable object retrieved from node

Exceptions

Throws com.nxp.jip.JipException

Variable get(InetSocketAddress node,
int moduleId,
int varIndex,
EnumSet<MessageFlag> flags);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 115

Chapter 7
Java Package com.nxp.jip

get (table variable)

Description

This method can be used to request a number of rows of a table variable of the
specified MIB on the specified node of a WPAN, where the MIB is specified using its
identifer.

The number of rows returned may be smaller than the number requested.

The list returned may be empty, but it shall not be null.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number which provides access to the MIB variable

moduleId ID of the MIB which contains the variable

varIndex Index of the variable within the MIB

firstTableEntry First row in the table variable to return

entryCount Maximum number of table rows to return

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

Variable object retrieved from node

Exceptions

Throws com.nxp.jip.JipException

Variable get(InetSocketAddress node,
int moduleId,
int varIndex,
short firstTableEntry,
int entryCount,
EnumSet<MessageFlag> flags);
116 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getByIndex

Description

This method can be used to request the value of the specified variable of a particular
MIB on the specified node of a WPAN, where the MIB is specified using its index
number.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number which provides access to the MIB variable

moduleIndex Index of the MIB which contains the variable

varIndex Index of the variable within the MIB

Returns

Variable object retrieved from node

Exceptions

Throws com.nxp.jip.JipException

Variable getByIndex(InetSocketAddress node,
int moduleIndex,
int varIndex);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 117

Chapter 7
Java Package com.nxp.jip

set

Description

This method can be used to set the specified value of the specified variable of a
particular MIB on the specified node of a WPAN, where the MIB is specified using its
identifer.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number which provides access to the MIB variable

moduleId ID of the MIB which contains the variable

varIndex Index of the variable within the MIB

var Value to which variable is to be set

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void set(InetSocketAddress node,
int moduleId,
int varIndex,
JipValue var,
EnumSet<MessageFlag> flags);
118 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
setByIndex

Description

This method can be used to set the specified value of the specified variable of a
particular MIB on the specified node of a WPAN, where the MIB is specified using its
index number.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number which provides access to the MIB variable

moduleIndex Index of the MIB which contains the variable

varIndex Index of the variable within the MIB

var Value to which variable is to be set

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void setByIndex(InetSocketAddress node,
int moduleIndex,
int varIndex,
JipValue var);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 119

Chapter 7
Java Package com.nxp.jip

multicastSet

Description

This method can be used to set the specified value of the specified variable of the
specified MIB on all nodes in the group that corresponds to the given IPv6 multicast
address.

A message broadcast is performed to the specified multicast address. On receiving
the message, each node which is a member of the relevant group will attempt to
perform the requested operation.

A failure to transmit the broadcast (e.g. due to a socket error) will be detected and
reported (via a relevant exception being thrown). Success, on the other hand, does
not guarantee delivery.

Parameters

node IP socket address containing IPv6 multicast address of the target
nodes and the port number which provides access to the MIB
variable

moduleId ID of the MIB which contains the variable

varIndex Index of the variable within the MIB

var Value to which variable is to be set

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void multicastSet(InetSocketAddress group,
int moduleId,
int varIndex,
JipValue var);

Note: Unlike most methods of the JIP object, this method is
non-blocking and will execute immediately. However, there is
no way for the calling application to find out whether the
operation succeeded.
120 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
queryModules

Description

This method can be used to obtain a number of MIB records from the specified node
of a WPAN. A MIB record includes the following information about an individual MIB:
identifier, index and name. The method also returns the index of the last MIB for
which a record has been returned and the number of remaining (unreported) MIBs
on the node.

The method allows the index of the first MIB of interest to be specified, as well as the
maximum number of records to return (in one call). Thus, it can be called multiple
times to obtain the records for all the MIBs on the target node.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number from which to obtain MIB records

firstModIndex Index of first MIB for which record should be obtained

maxRecords Maximum number of MIB records to be obtained

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

List of MIB records returned by the node

Exceptions

Throws com.nxp.jip.JipException

ModuleList queryModules(InetSocketAddress node,
int firstModIndex,
int maxRecords,
EnumSet<MessageFlag> flags);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 121

Chapter 7
Java Package com.nxp.jip

queryVariables

Description

This method can be used to obtain a number of MIB Variable records from the
specified MIB on the specified node of a WPAN. A MIB Variable record includes the
following information about an individual MIB Variable: index, name, type, access
type and security flag. The method also returns the number of remaining
(unreported) variables within the specified MIB on the node.

The method allows the index of the first variable of interest (within the MIB) to be
specified, as well as the maximum number of records to return (in one call). Thus, it
can be called multiple times to obtain the records for all variables of the specified MIB
on the target node.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number from which to obtain MIB Variable records

moduleIndex Index of MIB to be queried

firstVarIndex Index of first variable (in MIB) for which record should be obtained

maxRecords Maximum number of MIB Variable records to be obtained

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

List of MIB Variable records returned by the node

Exceptions

Throws com.nxp.jip.JipException

VariableList queryVariables(InetSocketAddress node,
int moduleIndex,
int firstVarIndex,
int maxRecords,
EnumSet<MessageFlag> flags);
122 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
trap

Description

This method can be used to register a trap on the specified MIB Variable on the
specified node of a WPAN, in order to receive notifications of changes to value of the
variable.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number of the MIB Variable to be trapped

moduleIndex Index of MIB containing variable to be trapped

varIndex Index of variable (in MIB) for which trap is to be set up

handle User-defined identifier that will be returned in trap notifications

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void trap(InetSocketAddress node,
int moduleIndex,
int varIndex,
int handle,
EnumSet<MessageFlag> flags);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 123

Chapter 7
Java Package com.nxp.jip

untrap

Description

This method can be used to unregister an existing trap on the specified MIB Variable
on the specified node of a WPAN, in order to disable notifications of changes to value
of the variable.

Parameters

node IP socket address containing IPv6 address of the target node and the
port number of the MIB Variable to be untrapped

moduleIndex Index of MIB containing variable to be untrapped

varIndex Index of variable (in MIB) for which trap is to be removed

flags Optional parameter (can be omitted) which allows one or both of the
following options to be selected (see Table 3 on page 114):

USE_SLEEPING_DEVICE_TIMEOUT
REQUEST_STAY_AWAKE

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void untrap(InetSocketAddress node,
int moduleIndex,
int varIndex,
EnumSet<MessageFlag> flags);
124 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
addTrapListener

Description

This method can be used to register a ‘trap listener’ which will receive notifications of
all subsequent trap events.

Parameters

listener Trap listener to be registered

Returns

None

Exceptions

None

void addTrapListener(TrapListener listener);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 125

Chapter 7
Java Package com.nxp.jip

removeTrapListener

Description

This method can be used to unregister a ‘trap listener’ so that it will no longer receive
notifications of trap events.

Parameters

listener Trap listener to be unregistered

Returns

None

Exceptions

None

void removeTrapListener(TrapListener listener);
126 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
setPacketHandler

Description

This method can be used to set the packet handler instance to be used in sending
and receiving messages.

Parameters

ph Packet handler to use

Returns

None

Exceptions

Throws java.io.IOException

void setPacketHandler(PacketHandler ph);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 127

Chapter 7
Java Package com.nxp.jip

setRetries

Description

This method can be used to set the number of times that the transmission of a JIP
message should be retried before generating a JipException.

Parameters

retries Number of times to re-attempt transmission of JIP message

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void setRetries(int retries);
128 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
setTimeout

Description

This method can be used to set the timeout before the transmission of a JIP message
is considered to have failed.

If the timeout is reached, the transmission will be retried or a JipException will be
generated (depending on the number of retries that have been set with setRetries()).

Parameters

retries Timeout, in milliseconds

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void setTimeout(int milliseconds);

Note: The equivalent timeout for a transmission with the
USE_SLEEPING_DEVICE_TIMEOUT option selected is set
using the setSleepingDeviceTimeout() method.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 129

Chapter 7
Java Package com.nxp.jip

setSleepingDeviceTimeout

Description

This method can be used to set the timeout before the transmission of a JIP message
is considered to have failed, when the USE_SLEEPING_DEVICE_TIMEOUT flag
has been set in the method that initiated the transmission (e.g. in the get() method).

If the timeout is reached, the transmission will be retried or a JipException will be
generated (depending on the number of retries that have been set with setRetries()).

Parameters

t Timeout, in milliseconds

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void setSleepingDeviceTimeout(long t);

Note 1: The equivalent timeout for a transmission without the
USE_SLEEPING_DEVICE_TIMEOUT option selected is set
using the setTimeout() method.

Note 2: The USE_SLEEPING_DEVICE_TIMEOUT option is
provided since when sending a message to an End Device
that can sleep, a longer timeout may be required.
130 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
close

Description

This method can be used to stop any threads and close any sockets used by the
implementation.

Parameters

None

Returns

None

Exceptions

None

void close(void);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 131

Chapter 7
Java Package com.nxp.jip

7.2 JipValue Interface

This section describes the JipValue interface, which consists only of methods.

7.2.1 JipValue Interface Methods

The JipValue interface methods are listed below, along with their page references:

Method Page

getValue 133

getType 134
132 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getValue

Description

This method can be used to obtain the value of a variable. An object of a class
appropriate to the value type will be returned.

For example, this method could be used to obtain the value of a MIB variable
obtained using the JIP get() method.

The type of the variable can be obtained using the method getType().

Parameters

None

Returns

Object representing value of variable

Exceptions

None

Object getValue();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 133

Chapter 7
Java Package com.nxp.jip

getType

Description

This method can be used to obtain the type of a variable.

For example, this method could be used to obtain the type of a MIB variable obtained
using the JIP get() method.

The value of the variable can be obtained using the method getValue().

Parameters

None

Returns

Type of variable

Exceptions

None

JipTypes.VariableType getType();
134 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.3 ModuleList Interface

This section describes the ModuleList interface, which consists only of methods.

7.3.1 ModuleList Interface Methods

The ModuleList interface methods are listed below, along with their page references:

Method Page

getLastIndex 136

getModules 137

getModulesRemaining 138
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 135

Chapter 7
Java Package com.nxp.jip

getLastIndex

Description

This method can be used to obtain the index value of the last MIB in a list of MIBs.

For example, this method could be used to obtain the index value of the last MIB in
a list of MIB records returned by the JIP queryModules() method.

Parameters

None

Returns

Index value of last MIB in list

Exceptions

None

int getLastIndex();
136 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getModules

Description

This method can be used to obtain a map of the records in a list of MIB records,
where a record is referenced using the MIB index.

For example, this method could be used to obtain a map of the MIB records in a list
returned by the JIP queryModules() method.

Parameters

None

Returns

Map containing the index and record for each MIB in the list

Exceptions

None

Map<Integer,ModuleRecord> getModules();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 137

Chapter 7
Java Package com.nxp.jip

getModulesRemaining

Description

This method can be used to obtain the number of MIBs present on a node after the
last one reported in the list (with index value greater than that of the last MIB in the
list).

For example, this method could be used after a call to the JIP queryModules()
method in order to find the number of unreported MIBs on the node.

Parameters

None

Returns

Number of remaining MIBs on node (not reported in list)

Exceptions

None

int getModulesRemaining();
138 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.4 ModuleRecord Interface

This section describes the ModuleRecord interface, which consists only of methods.

7.4.1 ModuleRecord Interface Methods

The ModuleRecord interface methods are listed below, along with their page
references:

Method Page

getModuleIndex 140

getModuleId 141

getModuleName 142
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 139

Chapter 7
Java Package com.nxp.jip

getModuleIndex

Description

This method can be used to obtain the index value of a MIB from its MIB record.

For example, this method could be used after a call to the JIP queryModules()
method in order to extract the MIB index value from an individual MIB record.

Parameters

None

Returns

Index value of MIB

Exceptions

None

int getModuleIndex();
140 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getModuleId

Description

This method can be used to obtain the identifier of a MIB from its MIB record.

For example, this method could be used after a call to the JIP queryModules()
method in order to extract the MIB identifier from an individual MIB record.

Parameters

None

Returns

Identifer of MIB

Exceptions

None

int getModuleId();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 141

Chapter 7
Java Package com.nxp.jip

getModuleName

Description

This method can be used to obtain the name of a MIB from its MIB record.

For example, this method could be used after a call to the JIP queryModules()
method in order to extract the MIB name from an individual MIB record.

Parameters

None

Returns

Name of MIB

Exceptions

None

String getModuleName();
142 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.5 Variable Interface

This section describes the Variable interface, which consists only of methods.

7.5.1 Variable Interface Methods

The Variable interface methods are listed below, along with their page references:

Method Page

getValue 144

getVarType 145

getVarIndex 146

getModuleIndex 147

isDisabled 148

isTable 149
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 143

Chapter 7
Java Package com.nxp.jip

getValue

Description

This method can be used to obtain the value of a variable.

Parameters

None

Returns

Value of variable or NULL if variable is disabled

Exceptions

Throws com.nxp.jip.JipException

JipValue getValue();
144 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getVarType

Description

This method can be used to obtain the type of a variable.

Parameters

None

Returns

Type of variable

Exceptions

Throws com.nxp.jip.JipException

JipTypes.VariableType getVarType();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 145

Chapter 7
Java Package com.nxp.jip

getVarIndex

Description

This method can be used to obtain the index of a variable (within a MIB).

Parameters

None

Returns

Index of variable within MIB

Exceptions

None

int getVarIndex();
146 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getModuleIndex

Description

This method can be used to obtain the index of the MIB which contains a particular
variable.

Parameters

None

Returns

Index of MIB containing variable

Exceptions

None

int getModuleIndex();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 147

Chapter 7
Java Package com.nxp.jip

isDisabled

Description

This method can be used to determine whether a variable is disabled.

Parameters

None

Returns

TRUE if variable is disabled, otherwise FALSE

Exceptions

Throws com.nxp.jip.JipException

boolean isDisabled();
148 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
isTable

Description

This method can be used to determine whether a variable is a table.

Parameters

None

Returns

TRUE if variable is a table, otherwise FALSE

Exceptions

Throws com.nxp.jip.JipException

boolean isTable();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 149

Chapter 7
Java Package com.nxp.jip

7.6 VariableList Interface

This section describes the VariableList interface, which consists only of methods.

7.6.1 VariableList Interface Methods

The VariableList interface methods are listed below, along with their page references:

Method Page

getVariables 151

getVariablesRemaining 152

getModuleIndex 153
150 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getVariables

Description

This method can be used to obtain a map of the records in a list of MIB Variable
records, where a record is referenced using the MIB Variable index.

For example, this method could be used to obtain a map of the MIB Variable records
in a list returned by the method queryVariables().

Parameters

None

Returns

Map containing the index and record for each MIB Variable in the list

Exceptions

None

Map<Integer,VariableRecord> getVariables();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 151

Chapter 7
Java Package com.nxp.jip

getVariablesRemaining

Description

This method can be used to obtain the number of MIB Variables present in a MIB on
a node after the last one reported in the list (with index value greater than that of the
last MIB Variable in the list).

For example, this method could be used after a call to the method queryVariables()
in order to find the number of unreported variables in the MIB.

Parameters

None

Returns

Number of remaining variables in the MIB (not reported in list)

Exceptions

None

int getVariablesRemaining();
152 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getModuleIndex

Description

This method can be used to obtain the index of the MIB which contains the set of
variables indicated in a list of MIB Variable records.

For example, this method could be used after a call to the method queryVariables()
in order to find the index of the MIB which contains the reported variables.

Parameters

None

Returns

Index of MIB containing set of variables

Exceptions

None

int getModuleIndex();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 153

Chapter 7
Java Package com.nxp.jip

7.7 VariableRecord Interface

This section describes the VariableRecord interface, which consists only of methods.

7.7.1 VariableRecord Interface Methods

The VariableRecord interface methods are listed below, along with their page
references:

Method Page

getType 155

getVarIndex 156

getVarName 157

getAccess 158

getSecurity 159
154 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getType

Description

This method can be used to obtain the type of a MIB variable from its MIB Variable
record.

For example, this method could be used to obtain the type of a MIB Variable reported
following a call to the JIP queryVariables() method.

Parameters

None

Returns

Type of variable

Exceptions

None

JipTypes.VariableType getType();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 155

Chapter 7
Java Package com.nxp.jip

getVarIndex

Description

This method can be used to obtain the index of a variable (within a MIB) from its MIB
Variable record.

For example, this method could be used to obtain the index of a MIB Variable
reported following a call to the JIP queryVariables() method.

Parameters

None

Returns

Index of variable within MIB

Exceptions

None

int getVarIndex();
156 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getVarName

Description

This method can be used to obtain the name of a MIB Variable from its MIB Variable
record.

For example, this method could be used to obtain the name of a MIB Variable
reported following a call to the JIP queryVariables() method.

Parameters

None

Returns

Name of variable

Exceptions

None

String getVarName();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 157

Chapter 7
Java Package com.nxp.jip

getAccess

Description

This method can be used to obtain the type of access permitted to a MIB Variable.

For example, this method could be used to obtain the access type for a MIB Variable
reported following a call to the JIP queryVariables() method.

Parameters

None

Returns

Access type for variable: constant, read-only or read-write

Exceptions

None

JipTypes.Access getAccess();
158 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getSecurity

Description

This method can be used to obtain the type of security configured for a MIB Variable.

For example, this method could be used to obtain the security type for a MIB Variable
reported following a call to the JIP queryVariables() method.

Parameters

None

Returns

Security type for variable: (currently) none

Exceptions

None

JipTypes.Security getSecurity();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 159

Chapter 7
Java Package com.nxp.jip

7.8 PacketHandler Interface

This section describes the PacketHandler interface, which consists only of methods.

7.8.1 PacketHandler Interface Methods

The PacketHandler interface methods are listed below, along with their page
references:

Method Page

open 161

close 162

send 163

addPacketListener 164
160 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
open

Description

This method can be used to open a packet handler and start listening for received
packets.

Parameters

None

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void open();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 161

Chapter 7
Java Package com.nxp.jip

close

Description

This method can be used to stop listening for received packets and close an opened
packet handler.

Parameters

None

Returns

None

Exceptions

None

void close();
162 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
send

Description

This method can be used to transmit data from the specified buffer to the device with
the given IP address.

Parameters

address IP address of target device

data Byte array containing data to be sent

len Length of data to be sent, in bytes

Returns

None

Exceptions

Throws com.nxp.jip.JipException

void send(java.net.InetSocketAddress address,
byte[] data,
int len);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 163

Chapter 7
Java Package com.nxp.jip

addPacketListener

Description

This method can be used to register a packet listener to be notified of packets
received by this handler.

Parameters

packetListener Packet listener to be registered

Returns

None

Exceptions

None

void addPacketListener(PacketListener packetListener);
164 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.9 PacketListener Interface

This section describes the PacketListener interface, which consists only of a method.

7.9.1 PacketListener Interface Method

The PacketListener interface method is listed below, along with its page reference:

Method Page

received 166
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 165

Chapter 7
Java Package com.nxp.jip

received

Description

This method should be called for each packet received by a packet handler instance.

Parameters

data Byte array containing payload of received packet

length Length of packet payload, in bytes

socketAddress Source address of packet

Returns

None

Exceptions

None

void received(byte[] data,
int length,
java.net.InetSocketAddress socketAddress);
166 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.10 TrapListener Interface

This section describes the TrapListener interface, which consists only of a method.

7.10.1 TrapListener Interface Method

The TrapListener interface method is listed below, along with its page reference:

Method Page

trapUpdate 168
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 167

Chapter 7
Java Package com.nxp.jip

trapUpdate

Description

This method must be called for each notification of a trap event received by a JIP
implementation.

Parameters

address Address of the remote node that sent the notification

handle Trap handle of the event

var Variable instance containing the new value

Returns

None

Exceptions

None

void trapUpdate(java.net.InetSocketAddress address,
int handle,
Variable var);
168 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.11 Classes of com.nxp.jip

This section details the classes of the com.nxp.jip package.

The package includes the following classes:

 JIPImpl - see Section 7.11.1

 JipTypes - see Section 7.11.2

 PacketHandlerIPv4 - see Section 7.11.3

 PacketHandlerIPv6 - see Section 7.11.4

7.11.1 JIPImpl Class

The JIPImpl class implements the JIP interface, described in Section 7.1, and includes
fields, methods and a constructor, as indicated below.

Fields

This class inherits the JIP interface fields, detailed in Section 7.1.1.

Methods

This class inherits the JIP interface methods, detailed in Section 7.1.2.

It also inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

Constructor

JIPImpl() is used to construct a JIPImpl instance:

 packetHandler is the packet handler to be used.

7.11.2 JipTypes Class

The JipTypes class includes methods and nested classes.

Methods

This class inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

JIPImpl(PacketHandler packetHandler);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 169

Chapter 7
Java Package com.nxp.jip

Nested Classes

The JipTypes class contains enumerations for various JIP constant values. These
enumerations come from four nested classes:

 JipTypes.Access - see Section 7.11.2.1

 JipTypes.Security - see Section 7.11.2.2

 JipTypes.Status - see Section 7.11.2.3

 JipTypes.VariableType - see Section 7.11.2.4

7.11.2.1 JipTypes.Access

7.11.2.2 JipTypes.Security

There is currently only one security enumeration: NONE (no security).

7.11.2.3 JipTypes.Status

Enumeration Description

CONST Constant - cannot be changed

READ_ONLY Variable is read-only

READ_WRITE Variable is read- and write-enabled

Table 4: JipTypes.Access Enumerations

Enumeration Description

ACCESS_NOT_ALLOWED Attempted access was not permitted

BAD_BUFFER_SIZE Buffer size is not appropriate

BAD_MODULE_INDEX MIB index value is not valid

BAD_VARIABLE_INDEX MIB variable index value is not valid

DISABLED Feature is not enabled

ERROR Operation has failed

SUCCESS Operation has succeeded

TIMEOUT Operation has timed out

VALUE_REJECTED Specified value has not been accepted

WRONG_TYPE Specified value is not of the correct type

Table 5: JipTypes.Status Enumerations
170 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
7.11.2.4 JipTypes.VariableType

7.11.3 PacketHandlerIPv4 Class

The PacketHandlerIPv4 class implements the PacketHandler interface, described in
Section 7.8, and includes methods and a constructor, as indicated below. The class
uses a JIPv4 tunnel to communicate with a JIP Border-Router (through a non-IPv6
network) and then with the associated JIP wireless network.

Methods

This class inherits the PacketHandler interface methods, detailed in Section 7.8.1.

It also inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

Constructor

PacketHandlerIPv4() is used to construct a PacketHandlerIPv4 instance to
communicate with the specified JIP Border-Router:

 ipv4Address is the IPv4 address of the JIP Border-Router

Enumeration Description (Variable Type)

BLOB blob

DOUBLE double

FLOAT float

INT16 int16

INT32 int32

INT64 int64

INT8 int8

STRING string

TABLE_BLOB table blob

UINT16 uint16

UINT32 uint32

UINT64 uint64

UINT8 uint8

Table 6: JipTypes.VariableType Enumerations

PacketHandlerIPv4(
java.net.InetSocketAddress ipv4Address,
boolean useTcp);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 171

Chapter 7
Java Package com.nxp.jip

 useTcp indicates whether to tunnel over TCP or UDP:

 TRUE - use TCP

 FALSE - use UDP

7.11.4 PacketHandlerIPv6 Class

The PacketHandlerIPv6 class implements the PacketHandler interface, described in
Section 7.8, and includes methods and a constructor, as indicated below. The class
uses an IPv6 multicast socket to communicate with a JIP wireless network.

Methods

This class inherits the PacketHandler interface methods, detailed in Section 7.8.1.

It also inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

Constructor

PacketHandlerIPv6() is used to construct a PacketHandlerIPv6 instance:

PacketHandlerIPv6();
172 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
8. Java Package com.nxp.jip.variables

This chapter details the Java package com.nxp.jip.variables which is supplied as
part of the Java JIP API. This package consists of the following classes corresponding
to different variable types:

 JipInteger - see Section 8.1

 JipFloat - see Section 8.2

 JipDouble - see Section 8.3

 JipString - see Section 8.4

 JipTable - see Section 8.5

 JipBlob - see Section 8.6

8.1 JipInteger Class

The JipInteger class implements the JipValue interface, described in Section 7.2, and
includes methods and constructors, as indicated below.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the standard
Java type java.math.BigInteger.

The class also inherits the following methods from the standard class
java.lang.Object: getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

In addition, the class has the following methods of its own, which each converts a
value to a particular type.

intValue() converts the value to an int (the value may be rounded or truncated during
the conversion):

shortValue() converts the value to a short (the value may be rounded or truncated
during the conversion):

longValue() converts the value to a long (the value may be rounded or truncated
during the conversion):

int intValue();

short shortValue();

long longValue();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 173

Chapter 8
Java Package com.nxp.jip.variables

byteValue() converts the value to a byte (the value may be rounded or truncated
during the conversion):

equals() compares the int variable with another int variable:

 obj is the object representing the int variable to compare with

The returned boolean indicates the outcome:

 TRUE - two variables have the same value

 FALSE - two variables do not have the same value

This method overrides equals() in the class java.lang.Object.

Constructors

This class has two JipInteger() constructors, both used to construct a JipInteger
object:

 type is the JIP integer type of the object

 value is the value to be assigned to the object

 type is the JIP integer type of the object

 buff is a buffer containing the value to be assigned to the object

8.2 JipFloat Class

The JipFloat class implements the JipValue interface, described in Section 7.2, and
includes methods and a constructor, as indicated below.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the standard
Java type java.lang.Float.

byte byteValue();

boolean equals(java.lang.Object obj);

JipInteger(JipTypes.VariableType type, long value);

JipInteger(JipTypes.VariableType type,
java.nio.ByteBuffer buff);
174 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
The class also inherits the following methods from the standard class
java.lang.Object: getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

In addition, the class has the following method of its own.

equals() compares the float variable with another float variable:

 obj is the object representing the float variable to compare with

The returned boolean indicates the outcome:

 TRUE - two variables have the same value

 FALSE - two variables do not have the same value

This method overrides equals() in the class java.lang.Object.

Constructor

JipFloat() is used to construct a JipFloat object:

 value is the floating-point value value to be assigned to the object

8.3 JipDouble Class

The JipDouble class implements the JipValue interface, described in Section 7.2, and
includes methods and a constructor, as indicated below.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the standard
Java type java.lang.Double.

In addition, the class has the following method of its own.

equals() compares the double variable with another double variable:

 obj is the object representing the double variable to compare with

The returned boolean indicates the outcome:

 TRUE - two variables have the same value

 FALSE - two variables do not have the same value

This method overrides equals() in the class java.lang.Object.

boolean equals(java.lang.Object obj);

JipFloat(float value);

boolean equals(java.lang.Object obj);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 175

Chapter 8
Java Package com.nxp.jip.variables

Constructor

JipDouble() is used to construct a JipDouble object:

 value is the double-precision floating-point value to be assigned to the object

8.4 JipString Class

The JipString class implements the JipValue interface, described in Section 7.2, and
includes methods and a constructor, as indicated below.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the standard
Java type java.lang.String.

In addition, the class has the following method of its own.

equals() compares the string variable with another string variable:

 obj is the object representing the string variable to compare with

The returned boolean indicates the outcome:

 TRUE - two variables have the same value

 FALSE - two variables do not have the same value

This method overrides equals() in the class java.lang.Object.

Constructor

JipString() is used to construct a JipString object:

value is the string value to be assigned to the object.

JipDouble(double value);

boolean equals(java.lang.Object obj);

JipString(java.lang.String value);
176 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
8.5 JipTable Class

The JipTable class implements the JipValue interface, described in Section 7.2, and
includes methods and a constructor, as indicated below. An object constructed from
this class represents a fragment of a table of JIP values.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the standard
Java type java.lang.Object.

The class also inherits the following methods from the standard class
java.lang.Object: equals(), getClass(), hashCode(), notify(), notifyAll(), toString(),
wait().

In addition, the class has the following methods of its own.

getRows() returns a map of the entries in the table, referenced by their index:

addRow() adds an entry to the table fragment:

 index is the index of the entry to be added

 value is the value of the entry to be added

If the table fragment already contains an entry with the specified index, the existing
value of the entry is replaced by the specified value.

addRows() adds a set of rows to the table fragment:

 rows is a map of table entries containing the new rows (the map is as returned
by getRows()).

getRemaining() returns the number of entries remaining in the table after the last
entry in the fragment:

getLast() returns the index of the last entry present in the table fragment:

java.util.Map<java.lang.Short,JipValue> getRows();

void addRow(short index, JipValue value);

void addRows(java.util.Map<java.lang.Short,JipValue> rows);

int getRemaining();

int getLast();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 177

Chapter 8
Java Package com.nxp.jip.variables

getVersion() returns the version of the table represented by the object:

Constructor

The constructor for this class is:

JipTable() is used to construct a JipTable object (representing a table fragment),
where:

 remaining is the number of table entries remaining

 version is the version number of the table

8.6 JipBlob Class

The JipBlob class implements the JipValue interface, described in Section 7.2, and
includes methods and a constructor, as indicated below.

Methods

This class inherits the JipValue interface methods, detailed in Section 7.2.1. In this
JipValue implementation, the getValue() method returns an object of the type byte[]
(a byte array).

The class also inherits the following methods from the standard class
java.lang.Object: getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

In addition, the class has the following method of its own.

equals() compares the blob variable with another blob variable:

 obj is the object representing the blob variable to compare with

The returned boolean indicates the outcome:

 TRUE - two variables have the same value

 FALSE - two variables do not have the same value

This method overrides equals() in the class java.lang.Object.

short getVersion();

JipTable(short remaining, short version);

boolean equals(java.lang.Object obj);
178 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Constructor

JipBlob() is used to construct a JipBlob object:

 data is the byte array of values to be assigned to the object

JipBlob(byte[] data);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 179

Chapter 8
Java Package com.nxp.jip.variables

180 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
9. Java Package com.nxp.jip.service

This chapter details the Java package com.nxp.jip.service which is supplied as part
of the Java JIP API. This package consists of the following interfaces:

 JenNetIPNetwork.NodeDiscoveryListener - see Section 9.1

 Service.TableGetListener - see Section 9.2

The referenced sections detail the methods associated with each interface. In
addition, the classes of the package are detailed in Section 9.3.

9.1 JenNetIPNetwork.NodeDiscoveryListener Interface

This section describes the JenNetIPNetwork.NodeDiscoveryListener interface, which
consists only of methods and defines an object which is capable of receiving node
discovery events.

9.1.1 JenNetIPNetwork.NodeDiscoveryListener Interface Methods

The JenNetIPNetwork.NodeDiscoveryListener interface methods are listed below,
along with their page references:

Method Page

nodeAdded 182

nodeRemoved 183
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 181

Chapter 9
Java Package com.nxp.jip.service

nodeAdded

Description

This method is invoked either when a new wireless network node is detected during
discovery or when a node joins the network (which is being actively monitored).

Parameters

node Description of node

Returns

None

Exceptions

None

void nodeAdded(Node node);
182 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
nodeRemoved

Description

This method is invoked either when a new wireless network node is not detected
during discovery or when a node leaves the network (which is being actively
monitored).

Parameters

node Description of node

Returns

None

Exceptions

None

void nodeRemoved(Node node);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 183

Chapter 9
Java Package com.nxp.jip.service

9.2 Service.TableGetListener Interface

This section describes the Service.TableGetListener interface, which consists only of
a method.

9.2.1 Service.TableGetListener Interface Method

The Service.TableGetListener interface method is listed below, along with its page
reference:

Method Page

rowAdded 185
184 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
rowAdded

Description

This method is invoked when a new entry is added to a MIB on a wireless network
node.

Parameters

index Index of new entry within MIB

value Value of new MIB entry

Returns

None

Exceptions

None

void rowAdded(short index, JipValue value);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 185

Chapter 9
Java Package com.nxp.jip.service

9.3 Classes of com.nxp.jip.service

This section details the classes of the com.nxp.jip.service package.

The package includes the following classes:

 JenNetIPNetwork - see Section 9.3.1

 Module - see Section 9.3.2

 Node - see Section 9.3.3

 Service - see Section 9.3.4

 VariableInst - see Section 9.3.5

9.3.1 JenNetIPNetwork Class

The JenNetIPNetwork class has its own methods, as indicated below.

Methods

This class inherits the TrapListener interface method, detailed in Section 7.10.1.

It also inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

In addition, the class has the following methods of its own.

getIPv6Prefix() returns the IPv6 prefix (subnet) of the wireless network.

getCoordinator() returns a description of the Co-ordinator of the wireless network.

getNode() returns a description of the specified node in the wireless network.

getAllNodes() returns descriptions of all the currently available nodes in the wireless
network, including the Co-ordinator.

getAllChildren() returns descriptions all the currently available nodes in the wireless
network, excluding the Co-ordinator.

long getIPv6Prefix();

Node getCoordinator();

Node getNode(java.net.InetSocketAddress addr);

java.util.Collection<Node> getAllNodes();

java.util.Collection<Node> getAllChildren();
186 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getNodes() returns descriptions of all the wireless network nodes whose class
matches the specified class(es).

 device_class is the Device ID filter

getDeviceClassList() returns a list of the distinct Device IDs of the nodes in the
wireless network. Note that the Co-ordinator has a special Device ID with the value
Service.COORDINATOR_DEVICE_CLASS.

There are two versions of the method discoverNodes().

This discoverNodes() obtains a list of the nodes in the wireless network.

This discoverNodes() obtains a list of the nodes in the wireless network. As data for
each node is fetched, the specified discovery listener will be notified.

 discoveryListener identifies the discovery listener to be notified (if no listener,
set to null)

addNode() adds a new node to the wireless network and returns a description of the
node. If a node with the same address has previously been discovered, details of the
pre-existing node will be returned instead. A nodeAdded event will be generated for
all registered discovery listeners.

 sockAddr is the address of the node to be added

 deviceClass is the Device ID of the node to be added

java.util.Collection<Node> getNodes(int device_class);

java.util.Collection<java.lang.Integer> getDeviceClassList();

java.util.Collection<Node> discoverNodes();

java.util.Collection<Node> discoverNodes(
JenNetIPNetwork.NodeDiscoveryListener discoveryListener);

Node addNode(java.net.InetSocketAddress sockAddr,
int deviceClass);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 187

Chapter 9
Java Package com.nxp.jip.service

removeNode() removes the node with the specified address from the wireless
network. The method will return TRUE if the node was successfully removed (FALSE
otherwise). A nodeRemoved event will be generated for all registered discovery
listeners.

 sockAddr is the address of the node to be removed

startMonitoring() registers a node discovery listener which is to be notified of
discovery events and starts monitoring the wireless network for changes (if it is not
already being monitored).

 listener is the node discovery listener to be registered

stopMonitoring() unregisters a node discovery listener, so it will no longer be notified
of discovery events, and stops monitoring the wireless network for changes (if no
listeners remain).

 listener is the node discovery listener to be unregistered

setMonitorInterval() sets the interval (in milliseconds) at which the wireless network
will be polled for changes while being monitored.

 milliseconds is the interval to be set, in milliseconds

shutdown() shuts down the wireless network, stopping all polling and attempting to
unregister any outstanding traps.

boolean removeNode(java.net.InetSocketAddress sockAddr);

void startMonitoring(
 JenNetIPNetwork.NodeDiscoveryListener listener);

void stopMonitoring(
 JenNetIPNetwork.NodeDiscoveryListener listener);

void setMonitorInterval(long milliseconds);

void shutdown();
188 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
9.3.2 Module Class

The Module class is used identify a MIB and its type. Instances of this class are
constructed in and returned by the Node class methods. The Module class has its own
methods, as indicated below.

Methods

The class inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

It also has the following methods of its own.

getModuleId() obtains the identifier of a MIB:

getName() obtains the name of a MIB:

getVariables() obtains a list of the variables in a MIB (it initiates a query if the MIB
does not exist within the cache):

The above method can throw the exception JipException.

There are two cases of the getVariable() method.

This getVariable() obtains the variable with the specified name within a MIB (it
initiates a query if the MIB variable does not exist within the cache):

 varName is a string representing the name of the variable

If no such variable exists, the method will return null.

The above method can throw the exception JipException.

This getVariable() obtains the variable with the specified index value within a MIB (it
initiates a query if the MIB variable does not exist within the cache):

 index is the value of index of the variable within the MIB

If no such variable exists, the method will return null.

The above method can throw the exception JipException.

int getModuleId();

java.lang.String getName();

java.util.List<VariableInst> getVariables();

VariableInst getVariable(java.lang.String varName);

VariableInst getVariable(int index);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 189

Chapter 9
Java Package com.nxp.jip.service

9.3.3 Node Class

The Node class is used identify a node and its Device ID. Instances of this class are
constructed in and returned by the network discovery process. The Node class has
its own methods, as indicated below.

Methods

The class inherits the following methods from the standard class java.lang.Object:
getClass(), notify(), notifyAll(), toString(), wait().

It also has the following methods of its own.

getDeviceClass() obtains the Device ID of a node:

getAddress() obtains the address of a node:

getModules() obtains a list of the MIBs present on a node (it initiates a query if the
device does not exist within the cache).

The above method can throw the exception JipException.

getModuleByIndex() obtains the MIB with the given index value on a node (it initiates
a query if the MIB does not exist within the cache):

 moduleIndex is the index value of the MIB on the node

If no such MIB exists, the method will return null.

The above method can throw the exception JipException.

getModuleByIndex() obtains the MIB with the given identifier on a node (it initiates a
query if the MIB does not exist within the cache):

 moduleId is the identifier of the MIB on the node

If no such MIB exists, the method will return null.

The above method can throw the exception JipException.

int getDeviceClass();

java.net.InetSocketAddress getAddress();

java.util.List<Module> getModules();

Module getModuleByIndex(int moduleIndex);

Module getModuleById(int moduleId);
190 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
getModuleByName() obtains the MIB with the given name on a node (it initiates a
query if the MIB does not exist within the cache):

 moduleName is a string representing the name of the MIB on the node

If no such MIB exists, the method will return null.

The above method can throw the exception JipException.

toString() returns a string representation of the object's address and Device ID:

This method overrides toString() in the class java.lang.Object.

hashCode() returns the hash code of an inet address:

This method overrides hashCode() in the class java.lang.Object.

equals() compares the inet socket addresses of two nodes:

 obj is the object representing the node to compare with

The returned boolean indicates the outcome:

 TRUE - nodes have same address

 FALSE - nodes have different addresses

This method overrides equals() in the class java.lang.Object.

9.3.4 Service Class

The Service class is used identify a node and its Device ID, which represents the core
JenNet-IP service. The Service class has its own field, methods and a constructor, as
indicated below.

Field

This class has only one field:

Module getModuleByName(java.lang.String moduleName);

java.lang.String toString();

int hashCode();

boolean equals(java.lang.Object obj);

Field Type Description

COORDINATOR_DEVICE_CLASS static int Represents the Co-ordinator of a JenNet-IP wire-
less network

Table 7: Service Class Field
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 191

Chapter 9
Java Package com.nxp.jip.service

Methods

The class inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

It also has the following methods of its own.

createNetwork() finds the Co-ordinator of the JenNet-IP wireless network to which
the specified node belongs and returns a JenNetIPNetwork object which describes the
network:

 nodeAddress is the address of the node for which the network is sought

The above method can throw the exception JipException or
java.net.UnknownHostException.

findCoordinator() returns a description of the Co-ordinator of the JenNet-IP wireless
network to which the specified node belongs:

 nodeAddress is the address of the node for which the Co-ordinator is sought

The above method can throw the exception JipException or
java.net.UnknownHostException.

getCache() obtains the cache instance used by the service:

shutdown() shuts down the service, stopping all polling and attempting to unregister
any outstanding traps.

Constructor

Service() used to construct a new Service instance, which uses the supplied JIP API
implementation to communicate with the network.

 jip is the JIP Service instance to use

JenNetIPNetwork createNetwork(
 java.net.InetSocketAddress nodeAddress);

Node findCoordinator(
 java.net.InetSocketAddress nodeAddress);

Cache getCache();

void shutdown();

Service(JIP jip);
192 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
9.3.5 VariableInst Class

The VariableInst class is used to represent a JIP Variable entity, including the
variable's value. Instances of this class are constructed in and returned by the Module
class getVariable() methods. The VariableInst class has its own methods, as
indicated below.

Methods

The class inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

It also has the following methods of its own.

getVarType() obtains the type of the MIB variable:

isDisabled() indicates whether the MIB variable is disabled:

The returned boolean indicates the outcome:

 TRUE - variable is disabled

 FALSE - variable is enabled

getValue() obtains the value of the MIB variable (if available):

The above method can throw the exception JipException.

setValue() sets the MIB variable to the specified value:

 value is the value to which the variable will be set

The above method can throw the exception JipException.

setUpdateInterval() sets the polling interval, in milliseconds, for the MIB variable:

 milliseconds is the time-interval, in milliseconds, between consecutive polls of
the variable

JipTypes.VariableType getVarType();

boolean isDisabled();

JipValue getValue();

void setValue(JipValue value);

void setUpdateInterval(long milliseconds);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 193

Chapter 9
Java Package com.nxp.jip.service

trap() registers a trap so that the specified trap listener will receive notifications of
changes to the MIB variable:

 listener is the trap listener with which to register trap

untrap() unregisters a trap so that no further notifications of changes to the MIB
variable will be generated for the specified trap listener:

 listener is the trap listener with which to unregister trap

startPoll() starts periodic polling of the MIB variable with the specified period, where
the results are passed to the specified trap listener:

 listener is the trap listener which is to receive polling results

 interval is the polling period, in milliseconds

stopPoll() stops periodic polling of the MIB variable:

 listener is the trap listener which receives the polling results

addListener() registers a trap listener:

 listener is the trap listener to be registered

 maxInterval is the maximum polling period, in milliseconds, supported by the
trap listener

 isTrap enables/disables the trap listener to receive trap notifications:

 TRUE - allow to receive trap notifications

 FALSE - do not allow to receive trap notifications

removeListener() unregisters a trap listener:

 listener is the trap listener to be unregistered

void trap(TrapListener listener);

void trap(TrapListener listener);

void startPoll(TrapListener listener, long interval);

void stopPoll(TrapListener listener);

void addListener(TrapListener listener,
long maxInterval,
boolean isTrap);

void removeListener(TrapListener listener);
194 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
update() obtains the latest value of the MIB variable:

The above method can throw the exception JipException.

isTable() determines whether the MIB variable is a table:

The returned boolean indicates the outcome:

 TRUE - variable is a table

 FALSE - variable is not a table

getName() obtains the name of the MIB variable:

getNode() obtains an object representing the node that contains the MIB variable:

getVariableRecord() obtains the MIB variable record for the MIB variable:

getModuleRecord() obtains the MIB record for the MIB which contains the variable:

isConstant() determines whether the MIB variable has the access type CONST:

The returned boolean indicates the outcome:

 TRUE - variable’s access type is CONST

 FALSE - variable’s access type is not CONST

isReadOnly() determines whether the MIB variable has the access type
READ_ONLY:

JipValue update();

boolean isTable();

java.lang.String getName();

Node getNode();

VariableRecord getVariableRecord();

ModuleRecord getModuleRecord();

boolean isConstant();

boolean isReadOnly();
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 195

Chapter 9
Java Package com.nxp.jip.service

The returned boolean indicates the outcome:

 TRUE - variable’s access type is READ_ONLY

 FALSE - variable’s access type is not READ_ONLY (can be written to)
196 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
10. Java Package com.nxp.jip.service.persist

This chapter details the Java package com.nxp.jip.service. persist which is supplied
as part of the Java JIP API. This package consists of only one class, XmlPersistence,
which is described in Section 10.1 and is concerned with saving/retrieving wireless
network context data to/from an XML file in non-volatile memory.

10.1 XmlPersistence Class

The XmlPersistence class includes methods and a constructor, as indicated below.

Methods

The class inherits the following methods from the standard class java.lang.Object:
equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

It also has the following methods of its own.

saveNetwork() saves data on the nodes of a wireless network to an XML file, where
network identifies the network:

loadNetwork() loads the node data from an XML file into a service and returns the
identity of the wireless network which contains the nodes:

 service specifies the service.

The above method can throw the exception java.io.FileNotFoundException.

saveDefinitions() saves the device classes and MIBs stored in a Cache instance to
an XML file:

 cache specifies the cache whose contents are to be saved.

loadDefinitions() loads device classes and MIB definitions from an XML file into a
Cache instance:

 cache specifies the cache.

The above method can throw the exception java.io.FileNotFoundException.

void saveNetwork(JenNetIPNetwork network);

JenNetIPNetwork loadNetwork(Service service);

void saveDefinitions(Cache cache);

void loadDefinitions(Cache cache);
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 197

Chapter 10
Java Package com.nxp.jip.service.persist

Constructor

XmlPersistence() is used to construct an XmlPersistence instance:

 filename represents the path to the XML file to be used by the instance

XmlPersistence(java.lang.String filename);
198 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Part IV:
Appendices
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 199

200 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
A. JenNet-IP Browser

The JenNet-IP Browser is an example of a generic engineering application which can
be used on a LAN/WAN device in order to monitor and control a JenNet-IP WPAN via
an IP connection. A Java version of the application, which can be run on the LAN/WAN
device (such as a PC), is supplied as an executable in the JenNet-IP SDK:

JenNet-IP-Browser-x.y.z.jar

A C-version of the application is provided in the firmware of the Linksys or Buffalo
router for JenNet-IP demonstration systems and runs on the router. Assuming your
PC has an IP connection to the router, this version of the application can be accessed
by directing your web browser to:

http://192.168.11.1/cgi-bin/Browser.cgi

You can write your own versions of these applications using the Java JIP API and C
JIP API, detailed in this manual.

This appendix provides useful preliminary information for getting started with the Java
version of the JenNet-IP Browser.

A.1 Browser Functionality

The JenNet-IP Browser application allows you to:

 Browse nodes in the wireless network of a JenNet-IP system

 View the MIBs on a node

 Monitor changing MIB variable values, using trap, poll and manual methods

 Write new values to MIB variables (write permissions allowing)

 Diagnose node issues using log details generated by the browser

A.2 Pre-requisites

To run the Java version of the JenNet-IP Browser application, your must have the
following on your PC/workstation:

 Windows (XP, Vista or 7), Linux or Mac OSX

 Java 1.6 or higher

Normally, an IPv6 connection is used between the PC/workstation and WPAN.
Preparing the IPv6 connection is described in Appendix A.2.1.

Alternatively, an IPv4 connection can be used between the PC/workstation and
WPAN. Configuring an IPv4 connection is described in Appendix A.2.2.

Note: The Java JenNet-IP Browser is fully described in
an online manual which is embedded in the application
and which can be accessed via Help > Online manual.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 201

Appendices
A.2.1 Preparing an IPv6 Connection

In order to use an IPv6 connection between the PC/workstation and WPAN, you will
need:

 IPv6 enabled on the machine (enabled by default in Windows Vista and 7)

 IPv6 address of the WPAN Co-ordinator

Procedures for these requirements are presented below.

To enable IPv6 in Windows XP

This procedure may only be required if you are using Windows XP, as IPv6 is enabled
by default in Windows Vista and 7.

1. Launch a command window on your PC/workstation.

2. Enter the following at the command prompt:

netsh interface ipv6 install

3. Press the <Enter> key and wait for the command prompt to re-appear.

To obtain and enter the IPv6 address of the Co-ordinator

This procedure assumes an IP connection between your PC/workstation and a
Linksys or Buffalo router used for JenNet-IP demonstration systems.

1. Access the web version of the JenNet-IP Browser by entering the following
address in your web browser: http://192.168.11.1/cgi-bin/Browser.cgi

2. Once this browser has detected and displayed the nodes in the wireless
network, click on Border-Router (which also acts as the Co-ordinator).

3. Copy or make a note of the IPv6 address for the Co-ordinator, which is shown
in the orange bar near the top of the resulting page.

4. Run the Java version of the JenNet-IP Browser, press the Discover button
and enter the IPv6 address into the IP address field of the resulting window.

A.2.2 Preparing an IPv4 Connection

In order to use an IPv4 connection between the PC/workstation and WPAN, follow the
procedure below:

1. Run the Java version of the JenNet-IP Browser.

2. Follow the menu path Configure > Network. The Configure network
properties dialogue box appears.

3. In the dialogue box:

 Tick the IPv4 checkbox.

 In the IPv4 address field, enter the IPv4 address of the Border-Router of
the wireless network.

Leave all other fields at their default values (unless specific values are
required).

4. Click OK.
202 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
B. JenNet-IP (JIP) CLI

This appendix details the Command Line Interface (CLI) which is supplied with the
JenNet-IP C software. The JenNet-IP (JIP) CLI is intended for use during system
development to allow a JenNet-IP WPAN to be accessed (monitored and controlled)
from the command line on a LAN/WAN device, such as a PC.

The JIP CLI commands are issued on a LAN/WAN device and may be executed on
this or another LAN/WAN device that has an IP connection to the target WPAN.
Typically, the commands are:

1. entered by the user on a LAN/WAN device via Secure Shell (SSH), using a
client such as PuTTY or Tera Term

2. executed on the LAN/WAN side of the the Border-Router of the target WPAN

A typical arrangement is illustrated in Figure 9 below.

No special installation of the JIP CLI is required. It can be run on any LAN/WAN device
on which the JIP C library software is installed.

The CLI is initially run by entering the following on the command line:

JIP -6 <IPv6 address of Co-ordinator>

The required commands can then be entered on the command line, as required. The
commands can also be concatenated to form a script which performs a series of
operations on the WPAN.

The JIP CLI commands are detailed in Appendix B.1 and examples of their use are
provided in Appendix B.2.

Figure 9: JIP CLI in JenNet-IP System

LAN/WAN Device Border-Router WPAN Node

Application6LoWPANdApplication

JenNet-IP
Wireless Stack

Device
IP Stack

LAN/WAN Interface WPAN Interface

Linux
IP Stack

Serial Connection
Application

JenNet-IP
Wireless Stack

IP
v6

 o
r

IP
v4

 C
on

n
ec

tio
n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

JIP Library
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 203

Appendices
B.1 Commands

The JIP CLI commands are listed and described in Table 8 below.

A list of brief command descriptions can also be displayed in the command window
using the help command.

The commands and parameters can be tab-completed.

Command Parameter Description

JIP -6 <IPv6 address> Run the JIP CLI in order to interact with the wireless net-
work which has the Co-ordinator with the specified IPv6
address

quit Terminate execution of the JIP CLI

help Display the Help which provides a list of commands and
brief descriptions

? Display the Help which provides a list of commands and
brief descriptions

discover Perform a network discovery to obtain information about
the nodes of the WPAN, including:

• IPv6 address

• Device ID

• MIBs - names and IDs

• MIB variables - names, indices, access types and values

save <filename> Save the current network context data (as returned by the
discover command) to the specified file in the file-system

load <filename> Load the previously saved network context data from the
specified file (in the file-system) into RAM

ipv6 <IPv6 address> Filter the network information that has been previously
obtained using the discover or load command by retain-
ing only the information about the node(s) with the speci-
fied IPv6 address - if this is a multicast address,
information about multiple nodes will be retained (subse-
quently this information can only be used with the set
command)

device <Device ID> Filter the network information that has been previously
obtained using the discover command by retaining only
the information about the node(s) with the specified Device
ID

mib <MIB name or
ID>

Filter the network information that has been previously
obtained using the discover command by retaining only
the information the MIB with the specified name or ID
(which may be present on multiple nodes)

Table 8: JIP CLI Commands
204 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
B.2 Example Usage

This section describes the use of the JIP CLI commands that are listed and described
in Appendix B.1.

B.2.1 Running the JIP CLI

The JIP CLI is run by entering the following command in the command window:

JIP -6 <IPv6 address>

where <IPv6 address> is the IPv6 address of the Co-ordinator of the wireless
network that the CLI will be used to access.

For example:

JIP -6 `cat /tmp/6LoWPANd.tun0`

Once the CLI is running, the command prompt will become:

JIP : >

var <MIB variable
name or index>

Filter the network information that has been previously
obtained using the discover command by retaining only
the information about the MIB variable with the specified
name or index value (which may be present in multiple
MIBs and/or on multiple nodes)

print Print the network information that has been previously
obtained using the discover command and possibly fil-
tered using the ipv6, device, mib and var commands

get Get the MIB variable values that have been previously
obtained using the discover command and that remain
after any filtering has been applied using the ipv6,
device, mib and var commands - the values are
obtained from the network nodes

set <value> Set the values of the MIB variables that have been previ-
ously detected using the discover command and that
remain after any filtering has been applied using the ipv6,
device, mib and var commands - the value is set on the
network node(s)

Note: Once one of the filter commands ipv6, device,
mib or var has been issued, the applied filter can be
removed by issuing the command again but with no
parameter.

Command Parameter Description

Table 8: JIP CLI Commands
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 205

Appendices
B.2.2 Discovering the Wireless Network

The contents of the wireless network can be ‘discovered’ using the command:

discover

While the discovery is taking place, the following will be displayed in the command
window (and no other commands can be entered):

Running discovery...

Once the discovery has completed, the number of nodes discovered and the time
taken by the discovery (in milliseconds) will be displayed, and the command prompt
will then be displayed again. For example:

Discovered 2 devices (Time: 3331 ms)

The discover command obtains the following information about each discovered
node in the network:

 IPv6 address of node

 Device ID of node

 List of MIBs on node - for each MIB, the following information is provided:

 MIB name

 MIB ID

 List of MIB variables - for each variable, the following information is
provided: name, index value within MIB, permissible access types and
data type (note that the variables are not read)

Once the discovery has completed, this ‘network context data’ is held in RAM on the
LAN/WAN device (and is not automatically displayed). The information can then be:

 saved to the local file-system, as described in Appendix B.2.3

 printed to the screen, as described in Appendix B.2.5, but may first be filtered
by IPv6 address, Device ID, MIB or MIB variable, as described in Appendix
B.2.4

Note: Execution of the JIP CLI can be stopped at any
time using the command quit.
206 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
B.2.3 Persisting Network Context Data

Once the wireless network has been discovered, as described in Appendix B.2.2, the
obtained network context data can be saved from RAM into the local file-system, so
that this data can be recovered if it is lost from RAM.

The data can be saved to a file in NVM using the following command:

save <filename>

where <filename> is the path and name of the file in which the data is to be saved.

The saved data can later be loaded from NVM into RAM using the following command:

load <filename>

Use of these commands may be useful if the JIP CLI is stopped and then restarted:

1. While the JIP CLI is running, the save command is used to store the network
context data in NVM.

2. Execution of the CLI is stopped using the quit command - the network
context data held in RAM is then lost.

3. The JIP CLI is later run again using the JIP -6 command.

4. The saved network context data can then be recovered from NVM and loaded
into RAM using the load command, avoiding the need to discover the
network again.

B.2.4 Applying Filters

The network context data that is held in RAM can be filtered such that subsequent
commands only apply to the remaining data. For example, the data following a
discovery can be filtered such that only data for nodes with a certain Device ID remain.
Following this filtering, a print command (see Appendix B.2.5) will only display the
subset of data remaining.

The network context data can be filtered by IPv6 address, Device ID, MIB and MIB
variable, as described below. In each case, the filter applies to the currently ‘active’
network context data (that remains accessible after any previous filtering).

IPv6 Address Filter

The currently active data can be filtered by IPv6 address using the following
command:

Note 1: After a filter has been applied, the full network
context data is still held in RAM but only a subset of this
data is ‘active’ and accessible to subequent commands.

Note 2: Once one of the filter commands ipv6,
device, mib or var has been issued, the applied filter
can be removed by issuing the command again but with
no parameter.
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 207

Appendices
ipv6 <IPv6 address>

where <IPv6 address> is the IPv6 address of the nodes for which context data is
to remain active.

Normally, specifying an IPv6 address will result in the data for only one node
remaining active. However, the specified address can be a multicast address, in which
case the data for all nodes in the corresponding multicast group will remain active.
Subsequently, this active multicast data can only be used with the set command,
when setting the same MIB variable value on multiple nodes.

Device ID Filter

The currently active data can be filtered by Device ID using the following command:

device <Device ID>

where <Device ID> is the Device ID of the nodes for which context data is to remain
active.

Thus, only data on the nodes with the specified Device ID will then be accessible.

MIB Filter

The currently active data can be filtered by MIB using the following command:

mib <MIB name or ID>

where <MIB name or ID> is the name or ID of the MIB for which node context data
is to remain active.

If the specified MIB is present on multiple nodes for which context data was previously
active, the relevant data for all these nodes will remain active.

For any node which contains the specified MIB, the context data that will remain active
includes:

 IPv6 address of node

 Device ID of node

 Details of specified MIB, including MIB variables

MIB Variable Filter

The currently active data can be filtered by MIB variable using the following command:

var <Variable name or index>

where <Variable name or index> is the name or index value of the MIB variable
for which node context data is to remain active.

If the specified MIB variable is present in MIBs on multiple nodes for which context
data was previously active, the relevant data for all these nodes will remain active.

For any node which contains the specified MIB variable, the context data that will
remain active includes:

 IPv6 address of node

 Device ID of node
208 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
 Details of relevant MIB, including the specified MIB variable but excluding all
other MIB variables

B.2.5 Printing Network Information

The currently active network context data (see Appendix B.2.4) can be displayed in
the command window using the following command:

print

If no filtering has been applied to the network context data held in RAM, the full
network context data will be displayed, as detailed in Appendix B.2.2.

Example output is:

 Node: fd04:bd3:80e8:2:215:8d00:12:147d Device ID: 0x80100001
 Mib: 'Node', ID 0xffffff00
 Var: 'MacAddr', Index 0
 E_JIP_VAR_TYPE_UINT64, E_JIP_ACCESS_TYPE_CONST, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'DescriptiveName', Index 1
 E_JIP_VAR_TYPE_STR, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'Version', Index 2
 E_JIP_VAR_TYPE_STR, E_JIP_ACCESS_TYPE_CONST, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'TxPower', Index 3
 E_JIP_VAR_TYPE_UINT8, E_JIP_ACCESS_TYPE_CONST, E_JIP_SECURITY_NONE
 Value: ?

 Mib: 'JenNet', ID 0xffffff01
 Var: 'DeviceType', Index 0
 E_JIP_VAR_TYPE_UINT32, E_JIP_ACCESS_TYPE_CONST, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'Parent Interface', Index 1
 E_JIP_VAR_TYPE_UINT64, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'TreeVersion', Index 2
 E_JIP_VAR_TYPE_UINT32, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'SubTreeNodes', Index 3
 E_JIP_VAR_TYPE_UINT32, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'NetworkTable', Index 4
 E_JIP_VAR_TYPE_TABLE_BLOB, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value:

 Var: 'LastChange', Index 5
 E_JIP_VAR_TYPE_BLOB, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 209

Appendices
 Var: 'NeighbourTable', Index 6
 E_JIP_VAR_TYPE_TABLE_BLOB, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'Depth', Index 7
 E_JIP_VAR_TYPE_UINT16, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Mib: 'Groups', ID 0xffffff02
 Var: 'Groups', Index 0
 E_JIP_VAR_TYPE_TABLE_BLOB, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'AddGroup', Index 1
 E_JIP_VAR_TYPE_BLOB, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'RemoveGroup', Index 2
 E_JIP_VAR_TYPE_BLOB, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'ClearGroups', Index 3
 E_JIP_VAR_TYPE_UINT8, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Mib: 'OND', ID 0xffffff03
 Var: 'Images', Index 0
 E_JIP_VAR_TYPE_TABLE_BLOB, E_JIP_ACCESS_TYPE_READ_ONLY, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'DeviceID', Index 1
 E_JIP_VAR_TYPE_UINT32, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'ChipSet', Index 2
 E_JIP_VAR_TYPE_UINT16, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'Revision', Index 3
 E_JIP_VAR_TYPE_UINT16, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'Download', Index 4
 E_JIP_VAR_TYPE_UINT8, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

 Var: 'LoadImage', Index 5
 E_JIP_VAR_TYPE_UINT8, E_JIP_ACCESS_TYPE_READ_WRITE, E_JIP_SECURITY_NONE
 Value: ?

B.2.6 Accessing MIB Variables

The JIP CLI provides commands for accessing MIB variables on network nodes.

The get command is used to read the current values of MIB variables and has no
parameters.
210 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
The set command is used to write new values to MIB variables and has the following
format:

set <value>

where <value> is the value to be set.

The commands apply to all MIB variables that are included in the currently active
network context data (see Appendix B.2.4). Therefore, before using these commands,
the particular MIB variable(s) to access must be selected by filtering out the irrelevant
MIB variables. Example filtering and accesses are provided below.

Example 1: Reading all MIB variables of a MIB on a particular node

In order to read all MIB variables of a certain MIB on one particular node, the following
filtering may be applied (after network discovery):

1. Use the ipv6 command to filter out all other nodes of the network.

2. Use the mib command to filter out all other MIBs on the node.

3. Use the get command to read the values of all MIB variables on the selected
MIB on the selected node.

Example output from the above procedure is shown below.

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'Images': Success (Time: 15ms)

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'DeviceID': Success (Time: 7ms)

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'ChipSet': Success (Time: 7ms)

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'Revision': Success (Time: 7ms)

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'Download': Success (Time: 7ms)

Reading Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'OND' Var

'LoadImage': Success (Time: 7ms)

Example 2: Writing to a certain MIB variable on a particular node

In order to write to a certain MIB variable on one particular node, the following filtering
may be applied (after network discovery):

1. Use the ipv6 command to filter out all other nodes of the network.

2. Use the mib command to filter out all irrelevant MIBs on the node.

3. Use the var command to filter out all other MIB variables in the relevant MIB
on the node.

4. Use the set command to write a new value to the selected MIB variable on
the node.

Example output from the above procedure is shown below.

Setting Node 'fd04:bd3:80e8:2:215:8d00:12:147d' MiB 'Groups' Var 'AddGroup' to
'1500f00f': Success (Time: 11ms)
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 211

Appendices
Example 3: Reading a certain MIB variable on all nodes (where present)

In order to read a certain MIB variable on all network nodes where it is present, the
following filtering may be applied (after network discovery):

1. Use the mib command to filter out all irrelevant MIBs on all network nodes.

2. Use the var command to filter out all other MIB variables in the relevant MIB
on the nodes.

3. Use the get command to read the value of the selected MIB variable on all
nodes.

B.2.7 Sequencing and Scripting Commands

It may be necessary to issue the JIP CLI commands in a certain order to obtain the
desired results. In particular, the sequence in which the filtering commands (see
Appendix B.2.4) are issued may be important.

For example, in order to print the details of a particular MIB on all nodes that have a
particular Device ID, the following filtering may be applied (after network discovery):

1. Use the device command to filter out all irrelevant nodes of the network.

2. Use the mib command to filter out all irrelevant MIBs on all network nodes.

3. Use the print command to display the details of the selected MIB on all
nodes.

More examples of sequencing commands are provided in Appendix B.2.6.

In addition, commands can be concatenated to form a script on the command line.
Within a script:

 All commands appear on a single command line

 Individual commands are separated by semi-colons

 The set of commands is preceded by the command line option -e

 The set of commands is enclosed by quotes

For example:

JIP -6 ‘cat /tmp/6LoWPANd.tun0’ -e "discover; mib BulbControl; var Mode; set 1"

In this example:

 JIP -6 ‘cat /tmp/6LoWPANd.tun0’ launches the JIP CLI and
immediately executes the script which follows

 discover performs a network discovery

 mib BulbControl selects the MIB called BulbControl on all relevant nodes

 var Mode selects the variable called Mode from this MIB

 set 1 assigns the value ‘1’ to this MIB variable on all relevant nodes

On completion of script execution, the JIP CLI automatically terminates.

This facility allows JIP functionality to be easily embedded in shell scripts.
212 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
C. Glossary

The main terms used within this document are defined below.

Term Description

Address A numeric value that is used to identify a network device.

API Application Programming Interface: A set of programming functions that
can be incorporated in application code to provide an easy-to-use inter-
face to underlying functionality and resources.

Application The program that deals with the input/output/processing requirements of
the host device, as well as high-level interfacing to the network.

Border-Router Also known as an Edge-Router. A device which provides a single point of
interaction between two networks. The device may perform translation of
address or protocol information. In a JenNet-IP system, a Border-Router
sits between each WPAN and the LAN.

Channel A narrow frequency range within the designated radio band - for example,
the IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless
network operates in a single channel which is determined at network ini-
tialisation.

Child A network node which is connected directly to a parent node and for which
the parent node provides routing functionality. A child can be an End
Device or Router. Also see Parent.

Cluster A wireless cluster in a JenNet-IP system is a WPAN which is connected to
a LAN via a Border-Router device.

Context Data Data which reflects the current state of a network node. The context data
must be preserved during sleep mode.

Co-ordinator The node through which a wireless network is started, initialised and
formed - the Co-ordinator acts as the seed from which the network grows,
as it is joined by other nodes. The Co-ordinator also usually provides a
routing function. All networks must have one and only one Co-ordinator.

Device ID 32-bit value that indicates the non-networking functionality of a JenNet-IP
wireless node (e.g. a type of lamp). Comprises Manufacturer ID, Product
ID and Base Type.

End Device A wireless network node which has no networking role (such as routing)
and is only concerned with data input/output/processing. As such, an End
Device cannot be a parent.

Host Generic term for an IP device that creates or consumes data packets.

IPv4 Internet Protocol version 4: The original protocol used on the Internet, still
widely used today, employing a 32-bit addressing scheme.

IPv6 Internet Protocol version 6: The latest Internet Protocol (used by
6LoWPAN and JenNet-IP) employing a 128-bit addressing scheme.

IEEE 802.15.4 A standard wireless network protocol that is used as the lowest level of the
JenNet-IP software stack. Among other functionality, it provides the physi-
cal interface to the wireless network’s transmission medium (radio).
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 213

Appendices
JenNet NXP’s proprietary wireless network protocol which sits on IEEE 802.15.4
in the software stack and provides multi-hop functionality.

Joining The process by which a device becomes a node of a network. The device
transmits a joining request. If this is received and accepted by a parent
node (Co-ordinator or Router), the device becomes a child of the parent.

MIB Management Information Base - a database comprising a table of local
variables, held in memory on a wireless network node.

Network Application ID An application-level network identifier comprising 32 bits unique to the
application, defined by the application developer

PAN ID Personal Area Network Identifier: A 16-bit value that uniquely identifies the
wireless network in that all neighbouring networks must have different PAN
IDs.

Parent A network node which allows other nodes (children) to connect to it and
provides a routing function for these child nodes. A maximum number of
children can be accepted (this limit is user-configurable). A parent can be a
Router or the Co-ordinator. Also see Child.

Router A wireless network node which provides routing functionality (in addition to
input/output/processing), if used as a parent node. Also see Routing.

Routing The ability of a network node to pass messages from one node to another,
acting as a stepping stone from the source node to the target node. Rout-
ing functionality is provided by Routers and the Co-ordinator. Routing is
handled by the network level software and is transparent to the application
on the node.

Sleep Mode An operating state of a node in which the device consumes minimal power.
During sleep, the only activity of the node is to time the sleep duration to
determine when to wake up and resume normal operation. The total sleep
duration is user-configurable. Normally, only End Devices sleep.

Stack The collection of software layers used to operate a system. The high-level
user application is at the top of the stack and the low-level interface to the
transmission medium is at the bottom of the stack.

UDP User Datagram Protocol: Simple message-based connectionless protocol
used in IP. Messages in a JenNet-IP system are implemented as UDP
packets embedded in the payloads of IPv6 packets.

WPAN Wireless PAN: A Personal Area Network (PAN) implemented wirelessly
through radio communication between nodes.

Term Description
214 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

 JenNet-IP LAN/WAN Stack
User Guide
Revision History

Version Date Comments

1.0 6-July-2012 First release

1.1 18-Sept-2012 Name of Java version of JenNet-IP Browser corrected and IPv6 mul-
ticast address format clarified

1.2 10-Jan-2013 Updated for the JN516x devices

1.3 15-Aug-2013 Updated for JenNet-IP v1.1 as follows:

• C functions eJIP_GroupJoin() and eJIP_GroupLeave() added

• Parameter added to C function eJIP_Init()

• C structures tsJIP_Context and tsVar modified

• Java method setSleepingDeviceTimeout() added to JIP Interface

• Optional Flags parameter added to some Java JIP Interface
methods
JN-UG-3086 v1.3 © NXP Laboratories UK 2013 215

JenNet-IP LAN/WAN Stack
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
216 © NXP Laboratories UK 2013 JN-UG-3086 v1.3

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks

	Part I: Concept Information
	1. JenNet-IP Overview
	1.1 JenNet-IP User Documentation
	1.2 A JenNet-IP System
	1.2.1 WPAN (Wireless Cluster)
	1.2.2 LAN
	1.2.3 Border-Router (WPAN-LAN Router)
	1.2.4 WAN
	1.2.5 IP Hosts

	1.3 Software Architecture and Components
	1.3.1 Software Overview
	1.3.2 Software Components (IPv6 Case)
	1.3.3 Software Components (IPv4 Case)

	1.4 JenNet-IP LAN/WAN Stack
	1.4.1 Application Level
	1.4.2 Network Level
	1.4.3 Physical/Data Link Level

	1.5 Essential JenNet-IP Concepts
	1.5.1 MIBs and MIB Variables
	1.5.2 Traps

	1.6 Network Data and Standard MIBs
	1.7 Application Development
	1.8 JenNet-IP Browser (Examples)
	1.8.1 Java Executable
	1.8.2 Border-Router Firmware

	2. Internet Protocol Concepts
	2.1 IP Data Packets
	2.1.1 Connectionless Transport
	2.1.2 Packet Delivery Reliability

	2.2 IP Stack
	2.3 Internet Protocol version 6 (IPv6)
	2.3.1 IPv6 Addresses
	2.3.2 IPv6 Address Components
	2.3.3 IPv6 Address Blocks
	2.3.4 IPv6 Address Scopes
	2.3.5 IPv6 Multicast Addresses

	2.4 UDP Sockets

	Part II: C JenNet-IP API
	3. IP Application Development (C Version)
	3.1 Overview
	3.2 JIP Sessions
	3.3 Initialising a JIP Session
	3.4 Connecting to a Border-Router (of a WPAN)
	3.5 Discovering the WPAN
	3.6 Discovering Nodes and MIBs
	3.6.1 Node Information
	3.6.2 MIB Information

	3.7 Monitoring the WPAN
	3.8 Remotely Accessing MIBs
	3.8.1 Reading from MIB Variables
	3.8.2 Writing to MIB Variables
	3.8.3 Using JIP Traps on MIB Variables

	3.9 Protecting Context Data
	3.10 Persisting Context Data
	3.10.1 Network Context Data
	3.10.2 Node Context Data

	4. C JIP API Functions
	4.1 JIP Management Functions
	eJIP_Init
	eJIP_Connect
	eJIP_Connect4
	eJIP_Destroy
	eJIP_Lock
	eJIP_Unlock
	eJIP_LockNode
	eJIP_UnlockNode
	eJIP_GroupJoin
	eJIP_GroupLeave

	4.2 Network Discovery Functions
	eJIPService_DiscoverNetwork
	eJIPService_MonitorNetwork
	eJIPService_MonitorNetworkStop
	eJIP_GetNodeAddressList
	psJIP_LookupNode
	psJIP_LookupMib
	psJIP_LookupMibId
	psJIP_LookupVar
	psJIP_LookupVarIndex
	eJIP_PrintNetworkContent

	4.3 Persistent Data Functions
	eJIPService_PersistXMLSaveNetwork
	eJIPService_PersistXMLLoadNetwork
	eJIPService_PersistXMLSaveDefinitions
	eJIPService_PersistXMLLoadDefinitions

	4.4 MIB Access Functions
	eJIP_GetVar
	eJIP_SetVar
	eJIP_MulticastSetVar
	eJIP_TrapVar
	eJIP_UntrapVar

	5. C JIP API Structures
	5.1 tsJIP_Context
	5.2 tsNetwork
	5.3 tsNode
	5.4 tsMib
	5.5 tsVar
	5.6 tsTable
	5.7 tsTableRow
	5.8 teJIP_VarType
	5.8.1 teJIP_VarEnable
	5.8.2 teJIP_ContextType

	5.9 teJIP_AccessType
	5.10 teJIP_Security

	Part III: Java JenNet-IP API
	6. IP Application Development (Java Version)
	6.1 Overview
	6.2 API Organisation (Packages, Interfaces, Classes)
	6.2.1 com.nxp.jip
	6.2.2 com.nxp.jip.variables
	6.2.3 com.nxp.jip.service
	6.2.4 com.nxp.jip.service.persist
	6.2.5 com.nxp.jip.service.cache
	6.2.6 com.nxp.jip.exception

	6.3 JIP Sessions
	6.4 Initialisation
	6.4.1 Creating a JIP Service
	6.4.2 Creating a JIP Session

	6.5 Discovering the WPAN
	6.5.1 Node Information
	6.5.2 MIB Information
	6.5.3 MIB Variable Information

	6.6 Monitoring the WPAN
	6.7 Accessing MIB Variables
	6.7.1 Reading from MIB Variables
	6.7.2 Writing to MIB Variables
	6.7.3 Using JIP Traps on MIB Variables

	6.8 Persisting Context Data
	6.8.1 Network Context Data
	6.8.2 Node Context Data

	7. Java Package com.nxp.jip
	7.1 JIP Interface
	7.1.1 JIP Interface Fields
	7.1.2 JIP Interface Methods
	get (single value)
	get (table variable)
	getByIndex
	set
	setByIndex
	multicastSet
	queryModules
	queryVariables
	trap
	untrap
	addTrapListener
	removeTrapListener
	setPacketHandler
	setRetries
	setTimeout
	setSleepingDeviceTimeout
	close

	7.2 JipValue Interface
	7.2.1 JipValue Interface Methods
	getValue
	getType

	7.3 ModuleList Interface
	7.3.1 ModuleList Interface Methods
	getLastIndex
	getModules
	getModulesRemaining

	7.4 ModuleRecord Interface
	7.4.1 ModuleRecord Interface Methods
	getModuleIndex
	getModuleId
	getModuleName

	7.5 Variable Interface
	7.5.1 Variable Interface Methods
	getValue
	getVarType
	getVarIndex
	getModuleIndex
	isDisabled
	isTable

	7.6 VariableList Interface
	7.6.1 VariableList Interface Methods
	getVariables
	getVariablesRemaining
	getModuleIndex

	7.7 VariableRecord Interface
	7.7.1 VariableRecord Interface Methods
	getType
	getVarIndex
	getVarName
	getAccess
	getSecurity

	7.8 PacketHandler Interface
	7.8.1 PacketHandler Interface Methods
	open
	close
	send
	addPacketListener

	7.9 PacketListener Interface
	7.9.1 PacketListener Interface Method
	received

	7.10 TrapListener Interface
	7.10.1 TrapListener Interface Method
	trapUpdate

	7.11 Classes of com.nxp.jip
	7.11.1 JIPImpl Class
	7.11.2 JipTypes Class
	7.11.2.1 JipTypes.Access
	7.11.2.2 JipTypes.Security
	7.11.2.3 JipTypes.Status
	7.11.2.4 JipTypes.VariableType

	7.11.3 PacketHandlerIPv4 Class
	7.11.4 PacketHandlerIPv6 Class

	8. Java Package com.nxp.jip.variables
	8.1 JipInteger Class
	8.2 JipFloat Class
	8.3 JipDouble Class
	8.4 JipString Class
	8.5 JipTable Class
	8.6 JipBlob Class

	9. Java Package com.nxp.jip.service
	9.1 JenNetIPNetwork.NodeDiscoveryListener Interface
	9.1.1 JenNetIPNetwork.NodeDiscoveryListener Interface Methods
	nodeAdded
	nodeRemoved

	9.2 Service.TableGetListener Interface
	9.2.1 Service.TableGetListener Interface Method
	rowAdded

	9.3 Classes of com.nxp.jip.service
	9.3.1 JenNetIPNetwork Class
	9.3.2 Module Class
	9.3.3 Node Class
	9.3.4 Service Class
	9.3.5 VariableInst Class

	10. Java Package com.nxp.jip.service.persist
	10.1 XmlPersistence Class

	Part IV: Appendices
	A. JenNet-IP Browser
	A.1 Browser Functionality
	A.2 Pre-requisites
	A.2.1 Preparing an IPv6 Connection
	A.2.2 Preparing an IPv4 Connection

	B. JenNet-IP (JIP) CLI
	B.1 Commands
	B.2 Example Usage
	B.2.1 Running the JIP CLI
	B.2.2 Discovering the Wireless Network
	B.2.3 Persisting Network Context Data
	B.2.4 Applying Filters
	B.2.5 Printing Network Information
	B.2.6 Accessing MIB Variables
	B.2.7 Sequencing and Scripting Commands

	C. Glossary

