
JenNet-IP WPAN Stack
User Guide

JN-UG-3080

Revision 1.4

15 August 2013

JenNet-IP WPAN Stack
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Contents

About this Manual 13
Organisation 13

Conventions 14

Acronyms and Abbreviations 15

Related Documents 16

Support Resources 16

Trademarks 16

Part I: Concept Information

1. Introduction 19
1.1 Wireless IP 19

1.2 6LoWPAN 21

1.3 Software Architecture 22

1.4 JenNet-IP 24

1.5 JenNet-IP User Documentation 26

1.6 Where Now? 26

2. Wireless Network Concepts 27
2.1 Wireless Operation 27

2.1.1 Radio Communication 27

2.1.2 Battery Power 28

2.2 Network Communications 28

2.3 Network Node Types 29

2.4 Network Topology 30

2.5 Network Identity 31

2.6 Node Addressing 32

2.7 Routing 32
2.7.1 Neighbour and Routing Tables 33

2.7.2 Routing Process on a Node 33

2.8 Network Formation and Operation 34

2.9 Other Network Operations 36
2.9.1 Auto-ping 36

2.9.2 Sleep Mode 37

2.9.3 Data Polling 37
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 3

Contents
3. JenNet-IP System Overview 39
3.1 Hardware Architecture and Components 39

3.1.1 WPAN (Wireless Cluster) 40

3.1.2 LAN 40

3.1.3 Border-Router (WPAN-LAN Router) 41

3.1.4 WAN 41

3.1.5 IP Host 42

3.2 Software Architecture and Components 43
3.2.1 Software Overview 43

3.2.2 Software Components (IPv6 Case) 44

3.2.3 Software Components (IPv4 Case) 47

3.2.4 JenNet-IP Browser 48

3.3 JenNet-IP WPAN Stack 49
3.3.1 Application Level 49

3.3.2 Network Level 50

3.3.3 Physical/Data Link Level 51

3.4 Essential JenNet-IP Concepts 52
3.4.1 MIBs and MIB Variables 53

3.4.2 Traps 53

3.5 Network Data and Standard MIBs 54

3.6 Network Security 54

3.7 JenNet Network Profiles 55

3.8 Fundamental Operations in JenNet-IP 57

3.9 Low-Energy Devices 58
3.9.1 Principles of Low-Energy Devices 58

3.9.2 Configuration of Low-Energy Devices 59

3.9.3 Registering a Low-Energy Device with a WPAN 59

Part II: JenNet-IP Embedded API

4. WPAN Application Development 63
4.1 Starting and Forming a WPAN 63

4.1.1 Performing a Cold Start 63

4.1.2 Performing a Warm Start 67

4.1.3 Fast Commissioning Mode 69
4.1.3.1 Principles of Fast Commissioning 69
4.1.3.2 Coding Fast Commissioning 70

4.2 Storing and Transferring Data 70
4.2.1 Creating a MIB and its Variables 71

4.2.2 Remotely Discovering MIBs 72
4.2.2.1 Obtaining List of MIBs 72
4.2.2.2 Obtaining List of Variables in a MIB 73

4.2.3 Remotely Setting MIB Variable Values 73
4 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.2.4 Remotely Obtaining MIB Variable Values 74

4.2.5 Remote Monitoring of MIB Variables (using Traps) 75

4.3 Forming Multicast Groups 77

4.4 Obtaining Error Reports 78

4.5 Handling Events 78
4.5.1 Stack Events 78

4.5.2 Data Events 79

4.5.3 Peripheral Events 80

4.6 Entering and Leaving Sleep Mode 80
4.6.1 Entering Sleep Mode 80

4.6.2 Leaving Sleep Mode 81

4.6.3 ‘Stay Awake’ Request 81

4.7 Data Polling 82
4.7.1 Polling Methods 82

4.7.2 Polling Events 82

4.8 Persisting Context Data 84

4.9 Using Low-Energy Devices 84
4.9.1 Implementation on Low-Energy Device 84

4.9.2 Implementation in JenNet-IP WPAN 85
4.9.2.1 On the Co-ordinator 85
4.9.2.2 On a Router 86
4.9.2.3 On a Target Node 87

5. JIP Embedded API General Functions 89
5.1 Stack Management Functions 89

v6LP_InitHardware 90

eJIP_Init 91

iJIP_ResumeStack 92

vJIP_Tick 93

vJIP_Sleep 94

u32JIP_GetErrNo 95

vJIP_EnableSecurity 96

vApi_DeleteChild 98

vApi_ConfigureFastCommission 99

eApi_SendNetworkAnnounceEnhanced 100

eApi_SendLowEnergyInform 101

5.2 Stack Mode Functions 102
vApi_SetStackMode 103

u16Api_GetStackMode 104

5.3 Network Profile Functions 105
bJnc_SetJoinProfile 106

bJnc_SetRunProfile 107

vJnc_GetNwkProfile 108

u8GetCurJoinProfile 109
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 5

Contents
u8GetCurRunProfile 110

bJnc_ChangeJoinProfile 111

5.4 Data Transfer Functions 112
eJIP_Poll 113

i6LP_RecvFrom 114

5.5 IPv6 Address Functions 115
iJIP_CreateInterfaceIdFrom64 116

iJIP_GetOwnDeviceAddress 117

iJIP_GetLastDestinationAddr 118

iJIP_GetLastSourceAddr 119

bJIP_AddGroupAddr 120

bJIP_RemoveGroupAddr 121

5.6 IP Functions 122
vJIP_SetDefaultMaxHopCount 123

vJIP_SetPacketDefragTimeout 124

6. JIP Embedded API MIB Functions 125
6.1 MIB Macros 125

6.1.1 MIB Type Definition Macros 125

START_DEFINE_MIB 126

DEFINE_VAR 127

END_DEFINE_MIB 128

6.1.2 MIB Declaration Macros 129

JIP_START_DECLARE_MIB 130

JIP_CALLBACK 131

JIP_END_DECLARE_MIB 132

6.2 MIB Initialisation Function 133
eJIP_RegisterMib 134

6.3 Local Variable Access Functions 135
vJIP_NotifyChanged 136

vJIP_SetEnabled 137

eJIP_PacketAddData 138

eJIP_AddTrap 139

eJIP_RemoveTrap 140

6.4 Remote Variable Access Functions 141
eJIP_Remote_ID_Set 142

eJIP_Remote_TableGet 144

eJIP_Remote_Trap 146

eJIP_Remote_Untrap 147

eJIP_Remote_QueryMib 148

eJIP_Remote_QueryVar 149
6 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
7. JIP Embedded API Callback Functions 151
7.1 General Callback Functions 151

vJIP_ConfigureNetwork 152

bJIP_GroupCallback 153

vJIP_PeripheralEvent 154

vJIP_StackEvent 155

v6LP_DataEvent 157

vJIP_StayAwakeRequest 158

7.2 MIB and Trap Callback Functions 159
vJIP_Remote_SetResponse 160

vJIP_Remote_GetResponse 161

vJIP_Remote_TableGetResponse 162

vJIP_Remote_TrapResponse 164

vJIP_Remote_TrapNotify 165

vJIP_Remote_QueryMibResponse 166

vJIP_Remote_QueryVarResponse 167

vJIP_Remote_DataSent 169

8. JIP Embedded API Structures and Enums 171
8.1 Data Types 171

8.1.1 tsJIP_InitData 171

8.1.2 tsNwkInfo 173

8.1.3 MAC_ExtAddr_s 174

8.1.4 ts6LP_SockAddr 174

8.1.5 tsJIP_StackGroupChange 175

8.1.6 tsJIP_MibDef 175

8.1.7 tsJIP_VarDef 176

8.1.8 tsJIP_MibInst 176

8.1.9 tsJIP_QueryMibResponse 177

8.1.10 tsJIP_QueryVarResponse 177

8.1.11 prSet 178

8.1.12 prGet 179

8.1.13 tsJIP_TableData 180

8.1.14 tsAssocNodeInfo 180

8.1.15 EUI64_s 181

8.1.16 in6_addr 181

8.1.17 tsStackReset 182

8.2 Enumerations 183
8.2.1 teJIP_Device 183

8.2.2 teJIP_VarType 183

8.2.3 teJIP_Access 184

8.2.4 teJIP_AccessType 184

8.2.5 teJIP_PollResponse 185

8.2.6 teJIP_Security 185

8.2.7 teLowEnergyStatus 186
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 7

Contents
8.3 Events 186
8.3.1 teJIP_StackEvent 186

8.3.2 teJIP_DataEvent 187

8.4 Return Codes 188
8.4.1 teJIP_Status 188

8.4.2 teJenNetStatusCode 189

8.5 Error Codes and Enumerations 190
8.5.1 te6LP_ErrorCode 190

8.5.2 te6LP_ErrorInfo 192

9. JenNet-IP Parameters 195
9.1 JenNet Network Parameters (tsNetworkConfigData) 195

9.2 JenNet Network Profile Parameters (tsNwkProfile) 199

9.3 Stack Parameters 202

Part III: Optional Features

10.Over-Network Download (OND) 207
10.1 OND Terminology 207

10.2 OND Features 207

10.3 General Operation 208

10.4 Image Storage 209

10.5 Multi-Image Bootloader 210

10.6 OND Restrictions for JN5164 210

10.7 OND Process 211
10.7.1 Initiating an OND 211

10.7.2 Downloading an Image 211

10.7.3 Recovering Image Blocks 212

10.8 Incorporating OND into an Application 213
10.8.1 Configuration in Application 213

10.8.2 Initialisation in Application 213

10.8.3 Performing a Download 214

10.9 OND Initialisation Functions 216
eOND_SrvInit 217

eOND_DevInit 218

10.10 Building an Application with OND 219
10.10.1 Makefile Modifications 219

10.10.2 Post-Build Modifications (using Checksum Tool) 219

10.10.3 OND Checksum Tool 220
8 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
11.Standalone WPAN 223
11.1 Architecture and Operation 223

11.2 WPAN Formation 223

11.3 IP Extension 224

Part IV: Appendices

A. Notes on JenNet Initialisation 229
A.1 Routing 229
A.2 Losing a Parent Node (Orphaning) 230

A.2.1 Detecting Orphaning 230
A.2.2 Re-joining the Network 231

A.3 Losing a Child Node 231
A.3.1 End Device Children 231
A.3.2 Router Children 233

A.4 Auto-polling 233

B. Handling ICMP Messages 234

C. Identifiers 236
C.1 Device ID 236
C.2 Device Type ID 237
C.3 MIB ID 237

D. Network Application ID 238
D.1 Channel Scan 238
D.2 Route Establishment 239
D.3 Functions 239

vApi_SetUserBeaconBits 240

vApi_RegBeaconNotifyCallback 241

v_6LP_SetUserData 242

v_6LP_SetNwkCallback 243

E. JenNet-IP Data Packet Format 244

F. JenNet-IP Principles 246
F.1 Introduction 246

F.1.1 JIP Modules 246
F.1.2 JIP Variables 247
F.1.3 JIP Commands 247

F.2 Discovery 248
F.3 Standard Modules 250

F.3.1 Node Module 250
F.3.2 JenNet Module 251
F.3.3 Groups Module 252
F.3.4 OND Module 254
F.3.5 DeviceID Module 255
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 9

Contents
F.4 Standard Commands 256
F.4.1 ‘Get’ Request 257
F.4.2 ‘Get by ID’ Request 258
F.4.3 ‘Get’ Response 258
F.4.4 ‘Set’ Request 260
F.4.5 ‘Set by ID’ Request 261
F.4.6 ‘Set’ Response 262
F.4.7 ‘Query Modules’ Request 262
F.4.8 ‘Query Modules’ Response 263
F.4.9 ‘Query Variables’ Request 263
F.4.10 ‘Query Variables’ Response 264
F.4.11 ‘Trap’ Request 265
F.4.12 ‘Untrap’ Request 265
F.4.13 ‘Trap’ Response 265
F.4.14 Trap Notifications 266

F.5 Low-Energy Frames 267
F.6 Enumerations 268

F.6.1 Variable Type Enumerations 268
F.6.2 Access Type Enumerations 269
F.6.3 Status Enumerations 269

G. JenNet-IP Browser 270
G.1 Browser Functionality 270
G.2 Pre-requisites 270

G.2.1 Preparing an IPv6 Connection 271
G.2.2 Preparing an IPv4 Connection 271

H. Memory Heap 272
H.1 Heap Organisation and Use 272
H.2 Heap Error Conditions 272

I. Example Over-Network Download (OND) 273

J. Exception Handling 275
J.1 Exception Types 275
J.2 Exception Handlers 276

J.2.1 Handler Registration for JN516x 276
J.2.2 Handler Registration for JN514x 277

J.3 Stack Frame 277

K. MicroMAC for Low-Energy Devices 279
K.1 Enabling the MicroMAC 279
K.2 Application Coding for the MicroMAC 280

K.2.1 Initialisation 280
K.2.2 Transmitting Frames 280
K.2.3 Receiving Frames 282

K.3 MicroMAC API 283
K.3.1 Initialisation Functions 283

vMMAC_Enable 284

vMMAC_EnableInterrupts 285

vMMAC_ConfigureRadio 286

vMMAC_SetChannel 287
10 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.3.2 Transmit Functions 288
vMMAC_SetTxParameters 289

vMMAC_SetTxStartTime 290

vMMAC_StartMacTransmit 291

vMMAC_StartPhyTransmit 292

u32MMAC_GetTxErrors 293
K.3.3 Receive Functions 294

vMMAC_SetRxAddress 295

vMMAC_SetRxStartTime 296

vMMAC_StartMacReceive 297

vMMAC_StartPhyReceive 299

u32MMAC_GetRxErrors 300
K.3.4 Timing Function 301

u32MMAC_GetTime 302

K.4 Structures 303
K.4.1 tsMacFrame 303
K.4.2 tsPhyFrame 304
K.4.3 MAC_Addr_u 304
K.4.4 MAC_ExtAddr_s 305

K.5 Enumerations 305
K.5.1 ‘Transmit Options’ Enumerations 305
K.5.2 ‘Transmit Status’ Enumerations 306
K.5.3 ‘Receive Options’ Enumerations 307
K.5.4 ‘Receive Status’ Enumerations 308
K.5.5 ‘Interrupt Status’ Enumerations 309

K.6 MAC and PHY Transceiver Modes 310
K.6.1 MAC Mode 310
K.6.2 PHY Mode 310

L. Glossary 311
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 11

Contents
12 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
About this Manual

This manual is the main reference resource in developing applications for devices in
the wireless network of an NXP JenNet-IP system. The manual first introduces the
basic principles of a JenNet-IP system, with particular attention to the wireless part. It
then describes the Application Programming Interface (API) that can be used to
develop applications for the NXP microcontrollers on which the wireless network
nodes are based. The API resources (functions, network parameters, enumerations,
structures, etc) are fully detailed. The manual should be used as a reference resource
throughout JenNet-IP wireless application development.

Organisation

The manual is divided into 4 parts:

 Part I: Concept Information comprises 3 chapters providing background
information for JenNet-IP:

 Chapter 1 introduces 6LoWPAN and NXP’s JenNet-IP.

 Chapter 2 outlines the wireless network concepts that you will need for an
understanding of JenNet-IP systems.

 Chapter 3 describes a JenNet-IP system.

 Part II: JenNet-IP Embedded API comprises 6 chapters detailing the JenNet-IP
Embedded API (JIP Embedded API), which is used to develop applications for
the JN51xx-based wireless nodes of a JenNet-IP system:

 Chapter 4 details the main tasks to implement in a JenNet-IP wireless
network application, including the necessary API function calls.

 Chapter 5 details the general functions of the JIP Embedded API.

 Chapter 6 details the MIB functions of the JIP Embedded API.

 Chapter 7 details the user-defined callback functions of the JIP Embedded
API.

Note 1: The development of applications for the LAN/
WAN part of a JenNet-IP system is described in the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

Note 2: JenNet-IP can be run on certain variants of the
NXP JN5168, JN5164, JN5148 and JN5142 wireless
microcontrollers - see Section 1.4 for the variants.
These microcontrollers are sometimes collectively
referred to as JN51xx devices in this manual.

Note 3: The version of the JenNet protocol referenced
in this manual is v3.0 and is not the same as the version
described in the JenNet Stack User Guide
(JN-UG-3041).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 13

About this Manual
 Chapter 8 details the structures and enumerations of the JIP Embedded
API.

 Chapter 9 describes the network and stack parameters used in a JenNet-
IP system.

 Part III: Optional Features comprises 2 chapters describing two optional
features of a JenNet-IP system:

 Chapter 10 describes the Over-Air Download (OND) feature for performing
software upgrades on wireless nodes

 Chapter 11 describes the operation of a WPAN as a standalone network
without an IP connection

 Part IV: Appendices describes the following miscellaneous topics:

 The roles of certain JenNet parameters used in a JenNet-IP system

 ICMP message handling

 Device ID

 Network Application ID

 Data packet format

 Low-level principles of JenNet-IP

 JenNet-IP Browser

 Memory Heap

 Example of OND

 Exception handling

 MicroMAC stack used in low-energy devices

 The key terminology used in JenNet-IP networks

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.
14 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Acronyms and Abbreviations

API Application Programming Interface

CLI Command Line Interface

ICMP Internet Control Message Protocol

IP Internet Protocol

JenNet Jennic Network

JIP JenNet-IP

LAN Local Area Network

LQI Link Quality Indicator

MIB Management Information Base

MLD Multicast Listener Discovery

MTU Maximum Transmission Unit

NVM Non-Volatile Memory

OND Over-Network Download

PAN Personal Area Network

PER Packet Error Rate

SDK Software Developer’s Kit

SSBL Second-Stage Bootloader

UDP User Datagram Protocol

WAN Wide Area Network

WPAN Wireless Personal Area Network

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 15

About this Manual
Related Documents

JN-UG-3086 JenNet-IP LAN/WAN Stack User Guide

JN-UG-3089 JenNet-IP EK040 Evaluation Kit User Guide

JN-UG-3093 JN516x-EK001 Evaluation Kit User Guide

JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-UG-3066 JN514x Integrated Peripherals API User Guide

JN-UG-3024 IEEE 802.15.4 Wireless Networks User Guide

JN-AN-1190 JenNet-IP Application Template Application Note

JN-AN-1162 JenNet-IP Smart Home Application Note

JN-AN-1110 JenNet-IP Border-Router Application Note

JN-AN-1059 Wireless Network Deployment Guidelines Application Note

Support Resources

To access JN516x support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

For JN514x resources, visit the NXP/Jennic web site: www.jennic.com/support

Trademarks

All trademarks are the property of their respective owners.

“JenNet”, “JenNet-IP” and the tree icon are trademarks of NXP B.V..

Caution: You should not refer to the JenNet Stack User
Guide (JN-UG-3041), as this describes a different
version of the JenNet protocol from the version used in
JenNet-IP.
16 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Part I:
Concept Information
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 17

18 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
1. Introduction

This chapter describes the motivation for JenNet-IP, provides a high-level view of the
software architecture, and introduces the JenNet-IP product and user documentation.

1.1 Wireless IP

The Internet and Personal Area Networks (PANs) traditionally operate at opposite
geographical scales - the Internet is a worldwide network while a PAN has a relatively
limited operating space. Wireless PANs (WPANs) which operate through radio
communication are now well established through recent technologies such as ZigBee,
IEEE 802.15.4 and NXP's own JenNet protocol. Wireless networks offer clear
advantages when compared with wired solutions, in terms of ease of implementation
and cost. However, the operating environment of a WPAN is normally restricted to
several hundred metres by the limited ranges of the small radio transceivers employed
in the network nodes.

A powerful and highly flexible PAN solution can be achieved by combining Internet
and WPAN technologies to allow a much expanded WPAN arena. This integrated
approach facilitates the following types of system:

 A WPAN can be controlled and monitored remotely over a Wide Area Network
(WAN), such as the Internet. As an example, a home heating/lighting WPAN
could be remotely accessed over the Internet from a PC, allowing the house to
be prepared for the occupant's return from a business trip. This type of system
is illustrated in Case A in Figure 1 below.

 Two or more physically separate but neighbouring WPANs can operate as a
single system by allowing them to communicate over a Local Area Network
(LAN), such as an Ethernet bus. As an example, security WPANs on different
floors of the same building can be connected via a LAN and centrally controlled
from a single security console for the building, which could be remotely located.
This type of system is illustrated in Case B in Figure 1 below.

 Two or more geographically separate WPANs can operate as a single system
by allowing them to communicate over a WAN, such as the Internet. As an
example, security WPANs on factory sites in different cities could be connected
via the Internet to effectively form a single security system for the
manufacturing company. This type of system is illustrated in Case C in Figure 1
below.

These integrated systems operate using the Internet Protocol (IP). Data is transported
in IP packets in the LAN/WAN domain of the system. Within a WPAN, the IP packets
are transmitted wirelessly between nodes using an established wireless transport
protocol, such as IEEE 802.15.4. The marriage of IP and WPAN has given rise to
6LoWPAN (IPv6 over Low power Wireless Personal Area Networks). Note that the '6'
comes from the fact that version 6 of the Internet Protocol is used in WPAN
communication (while version 4 is still the predominant technology used on the
Internet). JenNet-IP is based on the 6LoWPAN technology.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 19

Chapter 1
Introduction

IP Host = Remote device (e.g. PC, tablet or phone) used to access a WPAN (via WAN/LAN)

Figure 1: Example 6LoWPAN Systems

Note: A WPAN in a 6LoWPAN system is also referred
to as a ‘wireless cluster’.

 Internet

WAN
(e.g. Internet)

IP Host

IP Host

WPAN

LAN

WAN
(e.g. Internet)

IP Host

IP Host

WPAN

LAN

WPAN

IP Host

IP Host

WPAN

Private VPN

A B

C

WPAN

WPAN
20 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
1.2 6LoWPAN

In a 6LoWPAN system, information is communicated between nodes (which may be
in different wireless networks) by means of IP datagrams or packets. In a wireless
network (WPAN) which is part of a 6LoWPAN system, IPv6 packets are used.

IPv6 is a delivery protocol for transferring packets across data networks, including the
Internet, Ethernet and Personal Area Networks (PANs). Due to its explosive growth,
the Internet faces the problem that the supply of IPv4 addresses is now effectively
exhausted. This is the driving force behind the adoption of IPv6, which supports a
much larger address space (128 bits for IPv6 compared with 32 bits for IPv4),
providing an almost inexhaustible supply of addresses for network nodes.

IPv6 packets are transported between the nodes of a WPAN using one of the
established wireless network protocols (e.g. JenNet), built on the IEEE 802.15.4
wireless network standard (see Section 1.3). An IPv6 packet is carried in the payload
of an IEEE 802.15.4 data frame, which is passed between network nodes. However,
a raw IPv6 packet may be too large to fit into the payload of an IEEE 802.15.4 frame.
6LoWPAN is an adaptation layer which enables IPv6 packets to fit into IEEE 802.15.4
frame payloads. 6LoWPAN uses compression and fragmentation techniques to deal
with packets created by the protocols in the Internet Protocol Suite. For the full
specification of IPv6 over IEEE 802.15.4, refer to RFC 4944 available from the IETF
(www.ietf.org).

Note: The devices in a WPAN are referred to as ‘nodes’,
while the devices in an IP-based network are referred to
as ‘hosts’. In this manual, we will refer to the WPAN
devices as nodes, even though they may be accessed
across an IP-based network.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 21

Chapter 1
Introduction

1.3 Software Architecture

This section presents a simplified view of the software architecture implemented in a
6LoWPAN system. More detailed software architectures for JenNet-IP are presented
in Section 3.3.

The software stack shown in Figure 2 comprises three basic levels which are present
on both the wireless network nodes and the IP-based devices of a 6LoWPAN system.
The details of the levels differ between the WPAN and LAN/WAN domains of the
system.

Figure 2: Basic 6LoWPAN Software Stack

Network Level
Includes IP and wireless protocol layers

Physical/Data Link Level
Includes wireless or IP transport layers

Application Level
Includes user application and interface libraries
22 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The 6LoWPAN stack levels illustrated in Figure 2 are described below (from top to
bottom):

 Application level: This level contains the user applications which are
responsible for collecting/reporting data (e.g. temperature measurements), as
well as initiating data transmissions and handling received data. The user
application interacts with the lower levels of the stack via dedicated interfaces
in the form of function libraries.

 Network level: This level is responsible for managing communications with the
network and comprises the following:

 Internet Protocols: These protocols (UDP, TCP) are concerned with
assembling IPv6 packets to be sent and disassembling received IPv6
packets. The Internet Protocols are described further in Chapter 3.
JenNet-IP uses UDP as well as ICMP, which is mainly concerned with
management and error reporting.

 6LoWPAN: This layer is present only in the WPAN domain and is
concerned with compressing IPv6 packets before they are inserted into the
wireless network data frames to be transmitted and decompressing IPv6
packets extracted from received data frames.

 Wireless Network Protocol: This layer is present only in the WPAN
domain and is concerned with wireless network management such as
starting/joining a network, message (frame) addressing and routing, and
applying security (encryption/decryption) to messages. In JenNet-IP, this
layer is provided by NXP’s own JenNet protocol.

 Physical/Data Link level: This level is responsible for assembling frames to be
transmitted and disassembling received frames, and interacting with the
physical transmission medium.

 In the WPAN domain, this level is based on the IEEE 802.15.4 wireless
network protocol and is concerned with handling IEEE 802.15.4 data
frames (referred to as MAC frames). This involves inserting compressed
IPv6 packets into the payloads of data frames to be transmitted and
extracting such packets from the payloads of received data frames.

 In the LAN/WAN domain, this level may be based on IPv4 or IPv6
operating over a WAN (e.g. Internet) and/or LAN (e.g. Ethernet or WiFi).

Note: The JenNet-IP version of the 6LoWPAN stack is
fully introduced in Section 3.3.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 23

Chapter 1
Introduction

1.4 JenNet-IP

This section outlines the NXP JenNet-IP software, which is based on the 6LoWPAN
technology introduced in Section 1.2.

The JenNet-IP software includes components that run on the WPAN and LAN/WAN
sides of the system. A detailed introduction to this software is presented in Section 3.2.

Hardware Platforms

The hardware platforms for the JenNet-IP WPAN and LAN/WAN software are as
follows:

 The JenNet-IP WPAN software currently runs on the following variants of the
NXP JN51xx wireless microcontrollers:

 JN5168-001

 JN5164-001

 JN5148-J01

 JN5142-J01

These devices integrate a 2.4-GHz radio transceiver, a 32-bit processor core
and a wide range of on-chip peripherals, providing sufficient memory to run user
application software.

 The JenNet-IP LAN/WAN software runs on an IP Host, such as a PC, tablet or
mobile phone. Specific support is provided for developing applications for
Linux-based platforms.

Software Content

The JenNet-IP software is provided in the JN516x JenNet-IP SDK (JN-SW-4065)
installer and the JN514x JenNet-IP SDK (JN-SW-4051) installer (the required installer
depends on your chip type).

Note: If you are new to wireless networks, this
description may contain some terms and concepts
which will be unfamiliar until you have read the first few
chapters of this manual.

Note: In this manual, the above JN5168 and JN5164
devices are referred to collectively as JN516x, and the
above JN5148 and JN5142 are referred to collectively
as JN514x. All the possible devices are sometimes
collectively referred to as JN51xx devices.
24 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
This software includes:

 Application Programming Interfaces (APIs) for easy JenNet-IP application
development for the following platforms:

 JN516x and JN514x microcontrollers (on nodes in the WPAN domain)

 IP Hosts such as PCs, tablets and mobile phones (in the LAN/WAN
domain)

 Stack software required to implement a JenNet-IP system:

 WPAN stack, which includes the JenNet protocol software that is used on
top of IEEE 802.15.4

 LAN/WAN stack, which supports both IPv6 and IPv4 connectivity

 Software which runs on the Border-Router, the interface between the WPAN
and LAN/WAN domains

In addition, NXP provide a set of application development tools in the JN51xx SDK
Toolchain (JN-SW-4041) installer, including an Integrated Development Environment
(IDE), a C code compiler for the JN51xx device and the JN51xx Flash Programmer
utility. You should use the JN51xx Flash Programmer v1.8.6 or later. If your Toolchain
installer does not contain a suitable version, you should use the standalone version
available separately (in JN-SW-4007).

The software and documentation referenced above can be obtained free-of-charge
from NXP, as indicated in “Support Resources” on page 16.

Software Features

Features of the JenNet-IP software include:

 Support for wireless Tree networks using JenNet (with IEEE 802.15.4)

 Socket formation and data transfer services via an IPv6 UDP socket layer

 Packet fragmentation and re-assembly (when an IP packet is so large, it must
be broken up and transported in multiple IEEE 802.15.4 frames)

 IP level translation between 6LoWPAN wireless network and the Ethernet, via a
WPAN-LAN router (Border-Router)

 Support for unicast, multicast and broadcast addressing

Note: Installation instructions for the JN516x/JN514x
JenNet-IP SDKs and the JN51xx SDK Toolchain
are provided in the SDK Installation and User Guide
(JN-UG-3064).

Note: To aid your JenNet-IP application develeopment,
an example application is available in the Application
Note JenNet-IP Smart Home (JN-AN-1162) and an
application template is available in the Application Note
JenNet-IP Application Template (JN-AN-1190).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 25

Chapter 1
Introduction

1.5 JenNet-IP User Documentation

The full JenNet-IP user documentation set comprises the following:

The above documents can be obtained from NXP as indicated in “Support Resources”
on page 16.

1.6 Where Now?

This manual is designed to provide an introduction to JenNet-IP as well as detailed
information on developing wireless network applications for a JenNet-IP system.

Software designers who are reading this manual may be involved in developing
applications for the WPAN side and/or LAN/WAN side of a JenNet-IP system. The
next steps for these developers are outlined below.

WPAN Application Development

You are recommended to study all chapters of this manual:

 You should first read the remaining chapters in Part I: Concept Information to
provide the necessary background information for your JenNet-IP application
development.

 You should then refer to Part II: JenNet-IP Embedded API throughout your
application development.

LAN/WAN Application Development

You are recommended to study the following:

 You should first read the remaining chapters in Part I: Concept Information to
provide the necessary background information for your JenNet-IP application
development.

 You should then refer to the JenNet-IP LAN/WAN Stack User Guide
(JN-UG-3086) throughout your application development.

Part Number Document Title Desciption

JN-UG-3080 JenNet-IP WPAN Stack
User Guide (this manual)

Provides a general introduction to JenNet-IP and
details the software resources for developing applica-
tions that run on devices on the WPAN side of a
JenNet-IP system

JN-UG-3086 JenNet-IP LAN/WAN Stack
User Guide

Details the software resources for developing appli-
cations that run on devices on the LAN/WAN side of
a JenNet-IP system

JN-AN-1110 JenNet-IP Border-Router
Application Note

Provides information and software for developing a
custom Border-Router device which interfaces the
LAN/WAN and WPAN sides of a JenNet-IP system

Table 1: JenNet-IP User Documentation
26 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
2. Wireless Network Concepts

This chapter describes the fundamental concepts needed for an understanding of
Wireless Personal Area Networks (WPANs). A 6LoWPAN system contains one or
more WPANs which may be accessed from the Internet, where a constituent WPAN
is also referred to as a ‘wireless cluster’. In this chapter, we concentrate purely on a
WPAN in isolation from the rest of the 6LoWPAN system. The following concepts are
described: wireless operation (including radio communication and battery power),
communication routing, network topologies and node types, network identity, node
addressing, software architecture, network formation and operation.

2.1 Wireless Operation

The idea of a wireless network is to use radio links to replace the cables that connect
the nodes of a traditional network - thus, the nodes exchange data via radio
communications. However, cable replacement may be extended to include the power
cabling for certain nodes. These issues are expanded upon in the sub-sections below.

2.1.1 Radio Communication

The NXP JenNet-IP software is designed to run on JN51xx microcontrollers (see
Section 1.4), which feature an integrated radio transceiver operating in the 2400-MHz
radio frequency (RF) band. This band is available for unlicensed use in most
geographical areas (check your local radio communication regulations). The basic
characteristics of this RF band for the IEEE 802.15.4 protocol are as follows:

Thus, this RF band is split into 16 channels. It is possible to automatically select the
best channel (that with least detected activity) at system start-up.

The range of a radio transmission is dependent on the operating environment (inside
or outside a building), the NXP hardware module used (that carries the JN51xx
microcontroller) and the type of antenna used. Using a JN51xx standard-power
module fitted with an external dipole antenna, a range of 1 km can typically be
achieved in an open area. Inside a building, this can be reduced due to absorption,
reflection, diffraction and standing wave effects caused by walls and other solid

Note: In this chapter, references are made to the
JenNet protocol - this is an NXP software layer required
to form a multi-hop network.

Frequency Range 2405 to 2480 MHz

Channel Numbers 11-26 (16 channels)

Data Rate 250 kbps
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 27

Chapter 2
Wireless Network Concepts

objects. A JN51xx high-power module can achieve a range which is a factor of five
greater than that of a standard-power module.

2.1.2 Battery Power

One of the objectives of the wireless network protocols is the reduction of power
cabling by allowing the autonomy of certain nodes through battery power and even
solar power. This brings the advantages of easier and cheaper network installation,
more flexible siting of nodes and relocation of nodes.

Low-capacity batteries are often used and their use is optimised by restricting the time
for which energy is required. To this end, data is transmitted infrequently (perhaps
once per hour or even per week), with the device reverting to low-power sleep mode
the rest of the time. However, it is not normally feasible for all network devices to be
battery-powered, since some nodes must be left on all the time (see Section 2.3).

2.2 Network Communications

The basic operation in a network is to transfer data from one node to another. The data
is sourced from an input (possibly a switch or a sensor) on the originating node. This
data is communicated to another node which can interpret and use the data in a
meaningful way.

In the simplest form of this communication, the data is transmitted directly from the
source node to the destination node. However, if the two nodes are far apart or in a
difficult environment, direct communication may not be possible. In this case, it may
be possible to send the data to another node within range, which then passes it on to
another node, and so on until the desired destination node is reached - that is, to use
one or more intermediate nodes as stepping stones.

Tip: For guidance on the deployment of radio devices,
refer to the Application Note Wireless Network
Deployment Guidelines (JN-AN-1059), available from
NXP (see “Support Resources” on page 16).

Figure 3: Routing between Network Nodes

Node 1

Node 2 Node 3

Node 4Desired route

Actual route
28 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The process of receiving data destined for another node and passing it on is known
as ‘routing’ (see Section 2.7). The application running on the routing node is not aware
that the data is being routed, as the process is completely automatic and transparent
to the application.

2.3 Network Node Types

A wireless network can be made up from nodes of three types:

 Co-ordinator

 Router

 End Device

These node types and their roles are summarised in Table 2 below. Note that every
wireless network must initially have a Co-ordinator to start and form the network.

The application on each node configures the node as a Co-ordinator, Router or End
Device. The application on the Co-ordinator can also pre-configure the desired radio
channel for the network (or enable an automated search for the best channel).

Node Type Role

Co-ordinator The Co-ordinator is an essential node and plays a fundamental role at
system initialisation, when its tasks are to:

• Select the radio channel to be used by the network

• Start the network

• Allow other nodes to connect to it (that is, to join the network)

In addition to running applications, the Co-ordinator may provide mes-
sage routing, security management and other services.

Router In addition to running applications, the main tasks of a Router are to:

• Relay messages from one node to another (routing)

• Allow other nodes to connect to it (that is, to join the network)

A Router must remain active and therefore cannot sleep.

End Device The main tasks of an End Device at the network level are sending and
receiving messages. An End Device cannot allow other nodes to con-
nect to it. It can be battery-powered and, when not transmitting or
receiving, can sleep in order to conserve power.

Table 2: Node Types and Roles

Note: A ‘low-energy device’ can also be used with the
wireless network of a JenNet-IP system. This type of
device has very limited energy resources (e.g. an
‘energy harvesting’ device) and is not a full member of
the JenNet-IP network, but can send messages to the
network. Low-energy devices are more fully introduced
in Section 3.9.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 29

Chapter 2
Wireless Network Concepts

2.4 Network Topology

A wireless network in an NXP JenNet-IP system has a Tree topology, which
determines how the nodes are linked and how messages propagate through the
network.

A Tree topology consists of a Co-ordinator, Routers and End Devices. The Co-
ordinator is linked to a set of Routers and End Devices - its children. A Router may
then be linked to more Routers and End Devices - its children. This can continue to a
number of levels.

This hierarchy can be visualised as a tree structure with the Co-ordinator at the top,
as illustrated in the figure below.

Note that:

 The Co-ordinator and Routers can have children, and can therefore be parents.

 End Devices cannot have children, and therefore cannot be parents.

Note: A Router can be used in place of an End Device
in a Tree network, but the message relay functionality of
the Router will not be used - only its application will be
relevant.

Figure 4: Tree Topology

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

Router
Router

End Device

End Device

End Device Router
30 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The communication rules in a Tree topology are:

 A node can directly communicate only with its parent and with its own children
(if any).

 In sending a message from one node to another, the message must travel from
the source node up the tree to the nearest common ancestor and then down
the tree to the destination node.

While in a Tree network there is no alternative route if a necessary link fails, the
JenNet protocol provides the facility to automatically repair failed routes.

2.5 Network Identity

It must be possible to identify a wireless network uniquely in order to manage
situations in which multiple wireless networks are operating in the same space or
neighbouring spaces. A node must be able to identify the network to which it belongs.
In a wireless network which is part of a JenNet-IP system, the PAN (Personal Area
Network) ID is used for this identification.

The PAN ID is a 16-bit value used by the IEEE 802.15.4 protocol. It is used by the
lower levels of the software stack to identify the network - for example, in the delivery
of messages sent between nodes. It should be unique within the operating
environment - that is, it should not clash with the PAN ID of a neighbouring network.
A value for the PAN ID can be pre-set in the user application code of the Co-ordinator.
In JenNet-IP:

 If the PAN ID is pre-set to 0xFFFF, the Co-ordinator will choose an initial PAN
ID at random and then check for its uniqueness by “listening” for the PAN IDs of
other networks (it will repeatedly choose a random PAN ID until it finds one that
does not clash with that of another network)

 If the PAN ID is pre-set to any other valid value, the Co-ordinator will use this
PAN ID (irrespective of whether it clashes with the PAN ID of another network)

Routers and End Device will subsequently learn the PAN ID when they join the
network.

Note: It is important when designing and deploying a
Tree network that all child nodes stay within range of at
least one Router, so that reliable communication can
occur.

Note: A wireless network may also implement its own
network identifier at the application level, in addition to
the PAN ID at the stack level. The implementation of a
Network Application ID in JenNet-IP applications is
described in Appendix D.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 31

Chapter 2
Wireless Network Concepts

2.6 Node Addressing

The basic way of referring to a node in a network is by means of a numeric address.

In a wireless network, the IEEE or MAC address of the device is commonly used. This
is a 64-bit address, allocated by the IEEE, which uniquely identifies the device – this
address is fixed for the lifetime of the device and no two devices in the world can have
the same IEEE address. It is also sometimes called the ‘extended’ address.

In a 6LoWPAN system, a wireless network node is identified by means of its IPv6
address. This is a 128-bit address in which the leading 64 bits (bits 127-64) identify
the network and the trailing 64 bits (bits 63-0) identify the device. In JenNet-IP, this
second part of the address, known as the Host Interface ID, is derived from the
device’s MAC address - the Host Interface ID is taken to be the MAC address with bit
57 inverted. IPv6 addresses are described in more detail in Section 3.3.

2.7 Routing

A message sent from one node to another in a wireless network usually needs to pass
through one or more intermediate nodes before reaching its final destination. The role
of passing a message on (without processing its contents) is known as routing. The
nodes that can perform routing are the Routers and the Co-ordinator.

In a tree network, in one transmission a message can only be passed up the tree to
the parent node or down the tree to a child node (from where it may be passed on).
The message is passed up the tree in these ‘hops’ until it reaches the first common
ancester of the source node and the destination node, when it will be passed back
down the tree via another branch until it reaches its destination. The message will only
reach the top of the tree if the Co-ordinator is the only common ancestor.

A message contains two addresses for routing purposes - the address of the
destination node and the address of the “next hop” node. The latter is modified by the
routing node as the message propagates through the network, and becomes the same
as the destination address for the final hop.

Note 1: In JenNet-IP, tree routing is only respected for
unicasts. For a broadcast, the source node transmits the
message to all nodes within radio range - each receiving
Router node then re-broadcasts the message (but only
the first time it receives the message). A multicast to a
group of nodes is handled as a broadcast with a
multicast address corresponding to the group -
multicasts are described in more detail in Section 4.3.

Note 2: Although broadcast/multicast messages may be
received by an End Device (that is awake), these
messages are discarded by the device. Therefore, a
message should only ever be unicast to an End Device.
32 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
2.7.1 Neighbour and Routing Tables

The routing mechanism requires routing information to be stored in the Routers and
Co-ordinator. This information includes node addresses and is stored on the node in
two tables:

 Neighbour table: Contains entries for all immediate children as well as the
node’s parent.

 Routing table: Contains entries for all descendant nodes (lower in the tree)
that are not immediate children.

Together, these tables give a Router knowledge of all descendant nodes in the tree.
Since the Co-ordinator is at the root of the tree, it has knowledge of all nodes in the
network. These tables are assembled automatically by the stack as the network is
initialised and formed.

2.7.2 Routing Process on a Node

On receiving a message, a Router node implements the following routing process:

1. The Router first checks the final destination address to determine whether the
message was intended for itself and, if this is the case, processes the
contents of the message.

2. If the above check failed, the Router checks its Neighbour table to determine
whether the message is destined for one of its immediate children and, if this
is the case, passes the message to the relevant child node.

3. If the previous check failed, the Router checks its Routing table to determine
whether the message is destined for one its other descendants and, if this is
the case, passes the message to the relevant intermediate child (Router).

4. If the previous check failed, the Router passes the message up the tree to its
parent for further routing.

For the Co-ordinator, the routing mechanism is similar except the message cannot be
passed further up the tree.

Note: In a JenNet-IP system, the Neighbour table of a
wireless network node is held in a standard
Management Information Base (MIB) on the node - see
Section 3.5.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 33

Chapter 2
Wireless Network Concepts

2.8 Network Formation and Operation

The creation of a wireless network starts with the Co-ordinator. The procedure for
starting and forming the network is as follows:

On Co-ordinator

In order to form a wireless network, the Co-ordinator must be programmed with the
details of the nodes that will potentially join the network, possibly supplied in the form
of a ‘white list’ of all nodes that are allowed to join. A valid node may be identified by
its IEEE/MAC address or an abbreviated identifier. A unique ‘commissioning key’ for
the node must also be provided, which will be used to secure the joining process. This
information can be provided to the Co-ordinator at any time by an ‘out-of-band’ (non-
wireless) means - for example, from a remote device via the Internet.

1. Radio Channel Selected: The Co-ordinator searches for a suitable radio
channel (usually the one which has least activity). This can be limited to those
known to be usable - for example, avoiding frequencies where it is known a
wireless LAN is operating.

2. PAN ID Allocated: The Co-ordinator assigns a 16-bit PAN ID to the network.
The PAN ID is pre-set by the system developer but if this is set to the value
0xFFFF, the Co-ordinator selects a PAN ID at random which does not clash
with that of a neighbouring network (see Section 2.5).

3. Network Ready for Joining: The Co-ordinator now ‘listens’ (in the chosen
channel) for requests from other nodes (Routers and End Devices) to join the
network.

On Other Devices

4. Networks Searched: A node (Router or End Device) wishing to join the
network first scans the available channels to find potential networks to join. In
doing so, the node transmits beacon requests in these channels and waits for
beacons from potential parents.

5. Best Parent Selected: The Co-ordinator will initially be the only potential
parent of a new node. However, once the network has partially formed, the
joining device may be able to 'see' the Co-ordinator and one or more Routers
of the network. In this case, it uses the following criteria to choose its parent
(in the given order of precedence on a Router and in reverse order on an End
Device):

 Depth in tree (preference given to parent highest up the tree)

 Number of children (preference given to parent with fewest children)

 Signal strength (preference given to parent with strongest signal)

The applications may also implement their own network identifier which can be
used in the selection of an appropriate network/parent - see Appendix D.

6. Join Request Sent: The node then sends a message to the selected parent
(Co-ordinator or Router), encrypted with the node’s commissioning key,
asking to join the network through it. The selected parent initially rejects the
join request but checks whether the requesting node is allowed in the network
- this information must be obtained from the Co-ordinator. If the node is valid,
34 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
the Co-ordinator supplies the node’s commissioning key to all Router nodes in
the network.

7. Join Request Resent: The node then sends another encrypted join request
to a potential parent. Provided that the node has been successfully validated
by the Co-ordinator (in Step 6), the join request can be decrypted with the
commissioning key supplied by the Co-ordinator and the request can be
accepted. If the request is rejected, the node will perform another search (but
an End Device will sleep before starting this search).

8. Route Established to Co-ordinator: The node sends an Establish Route
message to the Co-ordinator, which replies to confirm the node’s membership
of the network. This exchange of messages results in the necessary entries
for the node being added to the Routing tables between the node and Co-
ordinator.

9. Network Key Received and Saved: In the response to the Establish Route
message (Step 8), the Co-ordinator includes the network security key. The
node must save this network key, which must be used to encrypt/decrypt all
future network communications in which the node participates (the node may
save the network key in non-volatile memory to aid any future rejoins of the
network).

Once all nodes have joined the network, data can be sent between the nodes. This
data is encrypted using the network key and can contain any kind of information, as it
is not interpreted by the networking software.

The commissioning key and network key are summarised in Section 3.6.

Tip: For more information on how a wireless network
forms and operates at the IEEE 802.15.4 level, refer to
the IEEE 802.15.4 Wireless Networks User Guide
(JN-UG-3024).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 35

Chapter 2
Wireless Network Concepts

2.9 Other Network Operations

This section describes a number of network tasks that must either be configured or
implemented in your application code.

2.9.1 Auto-ping

In a Tree network, a node may lose its parent and be unaware of this loss, particularly
if data exchanges with its parent are infrequent. In JenNet, an auto-ping mechanism
(enabled by default) is employed to periodically verify that the parent node is still
present (during periods when application data is not being exchanged). On each ping,
the node sends a message to its parent:

 If the parent is still present and recognises the node as its child, it sends a
response.

 Otherwise, one of two error situations exist:

 If the parent is not present, no response is sent. If a certain number (five,
by default) of consecutive pings are unacknowledged, the child considers
its parent to be lost and the child must attempt to re-join the network.

 If the parent is present but has disowned the child, an “Unknown-Node”
message is sent back (which an End Device must obtain by polling - see
Section 2.9.3). In this case, the child must attempt to re-join the network.

Note: In a busy network, pinging is not essential since
the loss of a parent will be noticed through failed data
communications. To avoid unnecessary traffic in such
networks, when data is received from the parent node,
the ping timer is re-started.
36 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
2.9.2 Sleep Mode

A node which does not need to regularly send data, receive data, take input or produce
output can conserve power during its inactive phases by entering a low-power mode,
called sleep mode. Since Routers and the Co-ordinator must constantly remain active
for routing and joining purposes, normally only End Devices are allowed to sleep.

Two forms of sleep mode are available:

 Sleep with memory held: On-chip volatile memory remains powered during
sleep, allowing memory contents to be preserved. This mode permits both
application and stack context data to be preserved during sleep, allowing stack
operation to be resumed (rather than re-started from scratch) on waking.

 Sleep without memory held: On-chip volatile memory is not powered during
sleep, meaning memory contents are lost. Therefore, stack context data is lost
and stack operation must re-start from scratch on waking. However, it is
possible to save application context data in non-volatile memory (e.g. Flash
memory) before entering sleep mode and then to retrieve this data on exiting
sleep

For information on implementing sleep mode using the JenNet-IP API functions, refer
to Section 4.6.

2.9.3 Data Polling

An End Device can sleep for a good proportion of the time in order to conserve power.
Therefore, when data arrives for the End Device from another node, it may not be
possible to deliver the data immediately, since the destination node may be in sleep
mode. Therefore, the parent of the destination node buffers the data until the End
Device is out of sleep mode and ready to receive data. It is the responsibility of the
End Device to poll its parent to check whether there is pending data waiting to be
delivered.

The data polling mechanisms employed in JenNet-IP are detailed in Section 4.7. By
default, auto-polling is enabled, in which the End Device polls periodically with a
configured period and also immediately after waking from sleep - the configuration of
auto-polling is described in Appendix A.4.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 37

Chapter 2
Wireless Network Concepts

38 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3. JenNet-IP System Overview

This chapter describes a JenNet-IP system, which is based on the 6LoWPAN system
introduced in Chapter 1. The description here assumes that you are already familiar
with the wireless network concepts presented in Chapter 2 and basic IP concepts
(outlined in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086)).

3.1 Hardware Architecture and Components

A JenNet-IP system contains one or more WPANs connected to a LAN, such as an
Ethernet bus, which may be connected to a WAN, such as the Internet (example
systems are presented in Section 1.1). This allows:

 The WPAN(s) to be monitored and controlled remotely, e.g. over the Internet.

 Multiple WPANs to communicate with each other via the LAN/WAN domain
(thus, a node in one WPAN can send a message to a node in another WPAN).

A typical system is illustrated in Figure 5 below.

The main components of a JenNet-IP system, as illustrated in Figure 5, are as follows:

 WPAN: A wireless network (which may be one of many in the system)

 LAN: A local IP-based bus (e.g. Ethernet) to which the WPANs are connected

 Border-Router (WPAN-LAN Router): A device used to connect a WPAN to
the LAN

 WAN: A wide-range IP-based network (e.g. the Internet) connected to the LAN

Figure 5: Typical JenNet-IP System

WAN
(e.g. Internet)

IP Host

IP Host

WPAN

LAN

WPAN

WPAN

Border-Router Border-Router

Border-Router
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 39

Chapter 3
JenNet-IP System Overview

 IP Host: A device in the LAN/WAN domain with an IP connection to the system
- for example, this may be a PC, tablet or mobile phone from which a WPAN is
monitored and controlled

The above components are described in more detail in the sub-sections below.

3.1.1 WPAN (Wireless Cluster)

A WPAN in a JenNet-IP system is referred to as a ‘wireless cluster’. A JenNet-IP
system may contain multiple WPANs, where each is an autonomous wireless network.
Each WPAN contains a single Co-ordinator node and a number of other nodes (End
Devices and/or Routers) - see Section 2.3. The Co-ordinator is normally incorporated
in the Border-Router device, described in Section 3.1.3.

The WPANs of a JenNet-IP system can have distinct pre-set PAN IDs or the same pre-
set PAN ID. However, if the same pre-set PAN ID is used in multiple networks with
operating spaces that overlap, the PAN ID of a network may be dynamically changed
at network start-up in order to achieve distinct PAN IDs - see Section 2.5.

Messages are sent between the wireless network nodes of a JenNet-IP system as
IPv6 packets which are compressed and embedded in IEEE 802.15.4 frames. The
delivery of a message uses the destination IPv6 address from the embedded IPv6
packet (irrespective of whether the destination node is inside or outside the WPAN of
the source node).

A WPAN can operate alone as a simple wireless network without a Border-Router. In
this case, IP connectivity is likely to be available as an option by adding a Border-
Router. Such a network operates without a full Co-ordinator, consisting only of
Routers and a pseudo-Co-ordinator, which is used to establish the network. For more
information on this type of network, refer to Chapter 11.

3.1.2 LAN

The LAN in a JenNet-IP system connects together the WPANs of the system. It is
typically an Ethernet bus. The bus allows the WPANs to communicate with each other
(send a message from a node in one network to another node in a different network)
by means of IPv6 packets. The LAN may also provide a connection to a WAN, such
as the Internet (and this WAN may provide connections to other JenNet-IP systems
consisting of a LAN and associated WPANs).

Note: A WPAN can also operate in isolation without an
IP connection via a Border-Router, but with the
capability to add a Border-Router if and when IP
connectivity is required - refer to Section 3.1.1 and
Chapter 11.
40 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.1.3 Border-Router (WPAN-LAN Router)

The Border-Router is a device used to connect a WPAN to the LAN, where each
WPAN has its own Border-Router. It is also sometimes referred to as an Edge-Router.
The Border-Router is usually incorporated in the same device as the network Co-
ordinator.

Within a WPAN, messages are transported as IEEE 802.15.4 frames with
compressed IPv6 packets embedded in their payloads. However, on the LAN they are
transported as uncompressed IPv6 packets encapsulated in the LAN frames (e.g.
Ethernet frames). The Border-Router must therefore:

 Take an IEEE 802.15.4 frame from its WPAN, extract the compressed IPv6
packet from the frame payload, uncompress the packet and insert it into a
frame for transportation on the LAN.

 Take an encapsulated IPv6 packet from the LAN, extract the packet from the
frame, compress the packet and then insert it into the payload of an IEEE
802.15.4 frame for transportation within the WPAN.

To receive messages destined for its own WPAN, a Border-Router must ‘listen’ on the
LAN for messages addressed to members of its WPAN - for this, the Border-Router
must analyse the destination IPv6 address in each IPv6 packet broadcast on the LAN.

3.1.4 WAN

The LAN may be connected to one or more WANs to allow remote access to the
attached WPAN(s) through IP-based communication. A WAN is typically the Internet,
allowing access from virtually anywhere in the world.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 41

Chapter 3
JenNet-IP System Overview

3.1.5 IP Host

An IP host is connected to the JenNet-IP system via the LAN or a WAN (such as the
Internet). It may have either of the following roles.

Remote Access Host

This IP host is used to access the JenNet-IP system remotely via a WAN (e.g. the
Internet). It can be a standard PC, tablet or mobile phone. The device may be
equipped with specific software for JenNet-IP system monitoring and control.
Alternatively, the device may access the system via a web server implemented on a
separate IP host (see Data Management Host below).

The JenNet-IP software includes APIs that can be used to develop applications to
monitor and control a JenNet-IP system from a remote IP host. These APIs are
detailed in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

Data Management Host

This IP host can be used as an intermediary for remote accesses to a JenNet-IP
system. In this sense, the device may act as a web server for other IP hosts (see
Remote Access Host above). In practice, the device may be incorporated in the
Border-Router.

The specific roles of the device are as follows:

 Provides a web server for interactions with IP hosts requiring remote access to
a JenNet-IP system:

 The device handles requests from other IP hosts for status information on
the system components and for configuration changes to the system
components (see below).

 The device must be able to generate web-based output to be displayed in
a web browser on the requesting device and accept web-based input from
the latter device.

 Interacts with individual nodes within a WPAN, in order to deal with
configuration and monitoring requests from an IP host (see above) - for
example, it may be required to service a request to obtain information from the
MIB (Management Information Base) on a particular node or to modify the MIB
on a node (MIBs are described in Section 3.4.1).
42 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.2 Software Architecture and Components

This section introduces the software that is used in the different parts of a JenNet-IP
system, first taking a high-level view in Section 3.2.1, and then taking a more detailed
view in Section 3.2.2 (IPv6 case) and Section 3.2.3 (IPv4 case).

3.2.1 Software Overview

The software in a JenNet-IP system runs in three distinct parts of the system:

 Nodes of the WPAN

 Border-Router between the WPAN and LAN/WAN domains

 Devices in the LAN/WAN domain

These divisions are illustrated in the figure below.

Working from right to left in the above diagram:

 WPAN Node: The user application operates over the JenNet-IP WPAN stack,
which communicates with the Border-Router via an IEEE 802.15.4 radio link.

 Border-Router: This device has both LAN/WAN and WPAN interfaces:

 WPAN Interface: This side of the Border-Router runs a JenNet-IP WPAN
stack, which communicates with the equivalent stack on the WPAN nodes
- this side of the Border-Router usually acts as the WPAN Co-ordinator
node

 LAN/WAN Interface: This side of the Border-Router runs a JenNet-IP
LAN/WAN stack, which communicates with the equivalent stack on the
remote IP Host (LAN/WAN device) - this side of the Border-Router must be
a Linux-based device

The two sides of the Border-Router communicate via a serial link.

 LAN/WAN Device: The user application operates over a JenNet-IP LAN/WAN
stack, which is connected to the Border-Router via an IP (IPv6 or IPv4) link.

Figure 6: Software Divisions in JenNet-IP System

LAN/WAN Device Border-Router WPAN Node

ApplicationApplicationApplication

JenNet-IP
WPAN Stack

JenNet-IP
LAN/WAN Stack

(OS-based)

LAN/WAN Interface WPAN Interface

JenNet-IP
LAN/WAN Stack
(Linux OS-based)

Serial Connection Application

JenNet-IP
WPAN Stack

IP
v6

 o
r

IP
v4

 C
on

n
ec

tio
n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 43

Chapter 3
JenNet-IP System Overview

The above architecture is described in more detail in Section 3.2.2 and Section 3.2.3.

3.2.2 Software Components (IPv6 Case)

This section provides more details of the JenNet-IP software components introduced
in Section 3.2.1, in the case of an IPv6 connection to the LAN/WAN domain.

The figure below is a more detailed version of Figure 6, showing the contents of the
JenNet-IP stacks (below the applications) and other software components required in
the Border-Router.

Again, working from right to left in the above diagram:

WPAN Node

The following software runs on the NXP JN51xx microcontroller in a node of a WPAN:

 Application: This software is developed using C APIs provided in the JN516x
JenNet-IP SDK (JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051). In
particular, the JenNet-IP Embedded API is needed (described in Part II:
JenNet-IP Embedded API).

 JenNet-IP WPAN Stack: This software stack is also provided in the JN516x
JenNet-IP SDK (JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051). It
consists of the stack layers indicated in Figure 7 and detailed in Section 3.3.

Note: The JenNet-IP software components that are
required in the case of an IPv4 connection to the LAN/
WAN domain are outlined in Section 3.2.3.

Figure 7: Software Components in JenNet-IP System (IPv6 Case)

LAN/WAN Device Border-Router WPAN Node

ApplicationApplicationApplicationApplication

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

C JIP

UDP

IPv6 - Linux Kernel

PHY

6LoWPANd

C JIP or Java JIP

UDP

IPv6

PHY

LAN/WAN Interface WPAN Interface

IP
v6

 C
o

nn
e

ct
io

n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

Serial Connection
44 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Border-Router

The software that runs on the Border-Router provides the interface between the
WPAN and LAN/WAN domains. The device has an interface to the WPAN domain and
an interface to the LAN/WAN domain, with a dedicated software stack at each of these
two interfaces:

 Software at WPAN interface: This is similar to the software that runs on a
WPAN node (see above), comprising a user application over the JenNet-IP
WPAN stack (described in Section 3.3), with the addition of a serial protocol
that allows internal communication with the software stack at the LAN/WAN
interface (see below). The WPAN stack on the Border-Router normally
provides the services of a Co-ordinator for the WPAN.

 Software at LAN/WAN interface: This software allows a LAN/WAN device to
interact with the Border-Router and, in turn, with the WPAN. It comprises:

 Application (optional): This application is optional and, if implemented,
allows the operator to interact with the system via web pages served to a
web browser running on the LAN/WAN device. The application is
developed using the C JIP API provided in the JN516x JenNet-IP SDK
(JN-SW-4065) and JN514x JenNet-IP SDK (JN-SW-4051), and described
in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086). This API
allows the development of an application for any Linux-based platform.

 JenNet-IP LAN/WAN Stack: This software stack includes both JenNet-IP
components and standard Linux OS components, and is described in
Section 3.3. The JenNet-IP application 6LoWPANd implements the serial
protocol which allows internal communication between the Linux kernel
and the application at the WPAN interface. This application is supplied by
NXP (see below) but a custom application can be used to implement this
serial communication.

The JenNet-IP WPAN and LAN/WAN stacks can be implemented within the same
device or in separate devices (connected via a serial link). For example, in the cases
of the JenNet-IP EK040 and JN516x-EK001 Evaluation Kits, the LAN/WAN stack is
implemented in a Linksys router and the WPAN stack is implemented on a JN51xx-
based dongle which plugs into a USB port of the router (the dongle is referred to as
the Border-Router node). The necessary JenNet-IP software components for the LAN/
WAN stack are supplied in the firmware of the Linksys router. If you wish to design
your own Border-Router, you will need to compile 6LoWPANd for your target from the
source code provided in the Application Note JenNet-IP Border-Router (JN-AN-1110)
or develop your own 6LoWPANd application to allow serial communication between
the two interfaces.

Further software may also be required in the Border-Router, depending on the
features implemented. For example, if the Over Network Download (OND) feature is
to be used then the application FWDISTRIBUTION will be needed. Again, if you wish
to design your own Border-Router, you will need to compile FWDISTRIBUTION for
your target from the source code provided in the Application Note JenNet-IP Border-
Router (JN-AN-1110) or develop your own FWDISTRIBUTION application.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 45

Chapter 3
JenNet-IP System Overview

LAN/WAN Device

The following software runs on a LAN/WAN device (an IP Host), such as a PC, tablet
or mobile phone, to allow the WPAN to be monitored and controlled:

 User Application (optional): This software can be used to monitor and control
the WPAN. It can be developed using the C JIP API or the Java JIP API, both
detailed in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).
Alternatively, a standard test application known as the JenNet-IP Browser can
be used which is supplied as a Java executable with the JenNet-IP SDK (and is
introduced in Section 3.2.4). This application is not needed if a standard web
browser is used as a user interface which receives web pages served by an
application on the LAN/WAN side of the Border-Router (see above).

 JenNet-IP LAN/WAN Stack: This software stack includes both JenNet-IP
components and standard OS components. The JenNet-IP components are
provided in the JenNet-IP SDK. The stack consists of the layers indicated in
Figure 7 and detailed in the JenNet-IP LAN/WAN Stack User Guide
(JN-UG-3086).
46 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.2.3 Software Components (IPv4 Case)

This section provides more details of the JenNet-IP software components introduced
in Section 3.2.1, in the case of an IPv4 connection to the LAN/WAN domain.

The figure below is a more detailed version of Figure 6, showing the contents of the
JenNet-IP stacks (below the applications) and other software components required in
the Border-Router.

The software depicted in Figure 8 is similar to that described for the IPv6 case in
Section 3.2.2, with the following differences:

 LAN/WAN Device: In the JenNet-IP LAN/WAN stack on this device:

 The UDP layer is replaced by a TCP/UDP layer

 The IPv6 layer is replaced by an IPv4 layer

 Border-Router: In the JenNet-IP LAN/WAN stack on this device:

 JIPd is a special application which is supplied in the JenNet-IP SDK and
which implements the JIPv4 protocol over TCP/UDP (JIPv4 encapsulates
JIP packets, including their IPv6 addressing, into either IPv4 UDP
datagrams or an IPv4 TCP stream)

 IPv4 and IPv6 co-exist side-by-side, IPv4 for the connection to the LAN/
WAN domain and IPv6 for the communications with the WPAN (IPv6
packets are embedded in IEEE 802.15.4 frames)

Note: The JenNet-IP software components that are
required in the case of an IPv6 connection to the LAN/
WAN domain are described in Section 3.2.2.

Figure 8: Software Components in JenNet-IP System (IPv4 Case)

LAN/WAN Device Border-Router WPAN Node

ApplicationApplication

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIP Embedded

UDP

IPv6

6LoWPAN

JenNet

IEEE 802.15.4

JIPd

TCP/UDP

IPv4

PHY

6LoWPANd

C JIP or Java JIP

TCP/UDP

IPv4

PHY

LAN/WAN Interface WPAN Interface

IP
v4

 C
o

nn
e

ct
io

n

IE
E

E
 8

02
.1

5.
4

W
ire

le
ss

 C
o

nn
ec

tio
n

IPv6 – Linux Kernel

Serial Connection
ApplicationApplication
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 47

Chapter 3
JenNet-IP System Overview

3.2.4 JenNet-IP Browser

The JenNet-IP Browser is an example application that may be used from a LAN/WAN
device to interact with the WPAN nodes of a JenNet-IP system. This application
provides a generic engineering interface to the WPAN, allowing MIB variables on
nodes to be inspected and/or edited.

The application may be run on either of the following:

 remote LAN/WAN device

 LAN/WAN side of the Border-Router - in this case, the application may serve
web pages that can be viewed in a web browser on the LAN/WAN device

In either case, it is the application that sits above the JenNet-IP LAN/WAN stack on
the appropriate device in Figure 6, Figure 7 and Figure 8.

A Java version of the application is supplied in the JenNet-IP SDK as an executable
that can be run directly on a LAN/WAN device (e.g. a PC or workstation) with an IP
connection to the Border-Router of a WPAN. It represents an example of a test
application that a developer may design using the Java JIP API (described in the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086)) to control and monitor the
WPANs of a JenNet-IP system.

A C-version of the application is provided in the firmware of the Linksys and Buffalo
routers used in JenNet-IP demonstration systems (and runs on the router). This
application was developed using the C JIP API. It is accessed from a normal web
browser running on the LAN/WAN device. This application is used as part of the set-
up procedure of the JenNet-IP Smart Home demonstration which is described in the
Application Note JenNet-IP Smart Home (JN-AN-1162).

Use of the JenNet-IP Browser is described further in Appendix G.

Note 1: Use of the Java version of the application is fully
descibed in an online manual which is provided within
the application and is accessed from the Help menu of
the interface.

Note 2: The C JIP API (described in the JenNet-IP LAN/
WAN Stack User Guide (JN-UG-3086)) can alternatively
be used to develop a similar application for a Linux-
based platform.
48 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.3 JenNet-IP WPAN Stack

In Section 1.3, the 6LoWPAN software architecture was introduced as a stack
comprising three basic levels: Application level, Network level and Physical/Data Link
level. This section presents a more detailed view of the JenNet-IP stack that runs on
devices on the WPAN side of a system.

The diagram in Figure 9 below repeats the three basic stack levels but provides a
more detailed view of the layers inside for the WPAN side of a JenNet-IP system.

The three basic levels are now detailed in the sub-sections below.

3.3.1 Application Level

The Application level provides services for the application processes that wish to
communicate with the devices/nodes in the WPAN. Within the Application level are the
user application and JenNet-IP (JIP) layer.

Note: The JenNet-LAN/WAN stack that runs on devices
on the LAN/WAN side of a system is detailed in the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

Figure 9: NXP JenNet-IP Stack - WPAN side

JenNet

User Application

Physical/Data Link level

Network level

Application level

IP

UDP

M
an

a
g

em
en

t
p

la
n

e

JIP

6LoWPAN

IEEE 802.15.4 MAC layer

IEEE 802.15.4 PHY layer
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 49

Chapter 3
JenNet-IP System Overview

User Application

This layer makes use of services provided by the node. The user application interacts
with the network through the JIP layer (described below).

JIP

JenNet-IP or JIP is NXP’s proprietary protocol which provides the user application with
access to device functionality. JenNet-IP APIs are provided for this purpose. The JIP
layer uses a single communications port (not one of the commonly used ports) on the
local node to allow a remote device to set and retrieve values in a MIB (Management
Information Base) on the node.

The basic concepts which underlie the JIP layer are very similar to the industry-
standard Simple Network Management Protocol (SNMP) in that configurable MIB
variables and useful information can be accessed via a common protocol. Access to
these variables may possibly result in additional actions - for example, setting the RF
channel variable will not only set the value but also result in the channel being
changed, while reading the current DIO pin levels will have no side effect.

The JIP layer also allows ‘traps’ to be associated with variables. A trap is a mechanism
by which a notification event is generated if the associated variable changes. Traps
can be configured/unconfigured for individual variables.

The JIP layer is described in more detail in Section 3.4.

3.3.2 Network Level

The Network level manages communications with the network and comprises the
following layers.

Internet Protocols

The following protocols are provided for assembling/disassembling IPv6 packets:

 UDP: The User Datagram Protocol (UDP) layer is a simple message-based
connectionless protocol. Messages in a JenNet-IP system are implemented as
UDP packets embedded in the payloads of IPv6 packets. Thus, this layer is
concerned wth assembling/disassembling UDP packets.

 IP: The Internet Protocol (IP) layer provides functionality for delivering packets
over a network. It is responsible for assembling/disassembling IPv6 packets by
inserting/extracting UDP packets, and handling the IPv6 packet headers.

The JenNet-IP Embedded API (introduced in Section 3.4) allows the user application
to interact with the UDP and IP layers. Most operations are performed through
interactions with the UDP layer.

Note: JIP is the default application-level protocol in
JenNet-IP but developers can alternatively use their
own custom UDP-based protocol, if desired.
50 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6LoWPAN

The 6LoWPAN layer provides data compression/decompression and fragmentation
services. Messages are transported over the wireless network of a JenNet-IP system
inside IEEE 802.15.4 data frames. An IPv6 packet containing the message data is
embedded in the payload of an IEEE 802.15.4 frame. However, an IPv6 packet is
normally too large to fit in the frame payload. The 6LoWPAN stack layer compresses
the packet before it is inserted into the IEEE 802.15.4 frame. If the compressed packet
is still too large, 6LoWPAN fragments the compressed packet for transportation in two
or more frames. The layer also decompresses the packet extracted from a received
frame (and combines fragmented packets, if necessary).

JenNet

JenNet is NXP’s proprietary protocol, which provides the multi-hop capability of the
JenNet-IP protocol stack. The JenNet protocol handles network addressing and
routing by invoking actions in the IEEE 802.15.4 MAC layer (see Section 3.3.3). Its
tasks include:

 Starting the network

 Adding devices to and removing them from the network

 Routing messages (IEEE 802.15.4 data frames) to their intended destinations

 Applying security to outgoing messages

3.3.3 Physical/Data Link Level

This level is provided by the IEEE 802.15.4 standard and consists of two separate
layers - the Physical layer and the Data Link layer. These layers together handle the
transmission and reception of packets (messages) between two WPAN nodes within
radio range of each other.

Data Link Layer

This layer is provided by the IEEE 802.15.4 MAC (Media Access Control) layer. It is
responsible for message delivery, as well as for assembling IEEE 802.15.4 data
frames (referred to as MAC frames) to be transmitted and for decomposing received
MAC frames.

Physical Layer

This layer is provided by the IEEE 802.15.4 PHY (Physical) layer. It is concerned with
the interface to the physical transmission medium, exchanging data bits with this
medium, as well as exchanging data bits with the layer above (the Data Link layer).

Tip: In order to develop JenNet-IP WPAN applications,
no knowledge of IEEE 802.15.4 is required. However, if
you do require more information on IEEE 802.15.4, refer
to the IEEE 802.15.4 Wireless Network User Guide
(JN-UG-3024).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 51

Chapter 3
JenNet-IP System Overview

3.4 Essential JenNet-IP Concepts

JenNet-IP or JIP is NXP’s proprietary protocol which provides the user application with
access to device functionality. This protocol has associated APIs comprising functions
(and associated resources) which facilitate this access:

 JIP Embedded API: This is a C API used to develop applications to run on a
JN51xx device on nodes of a WPAN. This API is detailed in Part II: JenNet-IP
Embedded API.

 C JIP API and Java JIP API: These C and Java APIs can be used to develop
applications that will run on a LAN/WAN device, such as a PC, tablet or mobile
phone. The C JIP API can also be used to develop an application for the LAN/
WAN side of a Border-Router and can only be used on Linux-based platforms.
These APIs are detailed in the JenNet-IP LAN/WAN Stack User Guide
(JN-UG-3086).

In a JenNet-IP system, data is held on WPAN nodes in one or more Management
Information Bases (MIBs). A MIB comprises a table of local variables and their values
- for example, a MIB on an environment monitoring node may contain variables for
temperature, humidity and wind speed. The functionality to interact with a MIB is
incorporated in the JIP layer of the JenNet-IP stack. MIBs are described further in
Section 3.4.1 below.

Note: In addition to the above APIs, the JenNet-IP SDK
includes the JenNet-IP CLI (Command Line Interface)
which allows access to JenNet-IP devices (such as
WPAN nodes) from the command line on an IP Host.
The JenNet-IP CLI is described in an appendix of the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

Note: JenNet-IP provides high-level functionality that
allows the application to interact with MIB variables. For
application developers who wish to work with JIP and
MIBs at a lower level, the necessary JIP principles are
outlined in Appendix F.
52 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.4.1 MIBs and MIB Variables

A MIB (Management Information Base) is a database containing local variables and
their values, held in memory on a WPAN node. A MIB allows variables to be collected
into a logical group. Up to 255 MIBs can exist on each node. The stack creates five
standard MIBs (described in Appendix F.3) and, therefore, the (local) application can
create up to 250 MIBs.

The application can define one or more MIB types, each with a unique identifier, name
and set of variables. A MIB of a particular type can then be declared and registered
with JIP. Each MIB is given a unique name and handle.

A MIB type (and therefore MIB) can have up to 255 variables. Each variable is
assigned the following:

 Handle

 Name

 Type

 Remote access rights (constant, read-only, read-write)

 ‘Set’ and ‘Get’ callback functions (JIP Embedded only)

The callback functions are user-defined and called by the stack whenever a request
is received to set or get the value of the variable. A variable can be enabled or disabled
- in the disabled state, it is not possible to set or get the variable’s value.

Note that it is the local application that defines a MIB type (and the variables within it)
and creates a MIB. However, remote applications can send requests to access a MIB
and its variables.

A MIB variable can have an associated ‘trap’ to allow automated monitoring of the
variable’s value/state. Traps are described in Section 3.4.2 below.

3.4.2 Traps

Traps are provided by the JIP layer of the stack and are similar to the industry-
standard SNMP traps. A trap is associated with a specific MIB variable on a remote
node (see Section 3.4.1) and is used to monitor the state of the variable. If a trap has
been set on a particular variable, any change in the variable will result in the
generation of a trap notification event to inform the application which set the trap. This
may result from a change in the value or in the enabled state of the MIB variable.

Traps can be globally suspended and resumed by the local application.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 53

Chapter 3
JenNet-IP System Overview

3.5 Network Data and Standard MIBs

Each node of a WPAN holds certain information about itself and the network to which
it belongs. This data is stored in five standard MIBs that are created by the JenNet-IP
stack on the node, which include the Node MIB and the JenNet MIB.

The Node MIB includes variables for:

 IEEE/MAC address

 Node name

 Application version

 Radio transmission power setting

The JenNet MIB includes variables for:

 Network device type of node

 Depth of node in tree

 Number of descendents of node in tree

 Neighbour table of node

The standard MIBs and their variables are described in Appendix F.3.

Information held in the standard MIBs on a node can be read by a WPAN application
as described in Section 4.2.4 or by a LAN/WAN device application as described in the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

3.6 Network Security

Communications within a WPAN of a JenNet-IP system are mostly secured through
encryption based on one of two security keys:

 Commissioning key

 Network key

These two keys are explained below. Note that the node join process, referred to
below, is described more fully in Section 2.8.

Commissioning Key

The commissioning key is unique to a particular node and is only used when the node
joins the network. This key is held on the node and must also be provided to the
Border-Router before the node joins the network, possibly as part of a ‘white list’ of all
nodes that are allowed to join the network. This information can be supplied to the
Border-Router by an ‘out-of-band’ (non-wireless) means - for example, from a remote
device via the Internet.

When a Router or the Co-ordinator receives a join request from a potential child node,
the request is encrypted using the node’s commissioning key and is initially rejected
by the prospective parent. The latter device then obtains the relevant commissioning
key from the Border-Router (see Note below). Another similarly encrypted join request
54 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
is then received from the same node and is decrypted using the commissioning key
obtained. The decryption must be successful in order for the join process for the node
to continue and the parent shares the network key with the child node, encrypted
using the commissioning key. All subsequent communication is encrypted using the
network key (see below).

Network Key

The network key is known to all nodes of the network and is used to encrypt all internal
network communications in which a node is involved after it has joined the network.
This key is supplied by the Co-ordinator as part of the node join process - it is included
in the Co-ordinator’s response to an Establish Route message from the node (sent
after the node has been accepted by a parent). Note that the Establish Route message
and its response are themselves encrypted with the network key between the parent
and the Co-ordinator, but with the joining node’s commissioning key between the node
and its parent (since the network key is not known to the node at this stage). Once a
node has the network key, it may save the key to non-volatile memory in order to make
any future rejoins more efficient.

3.7 JenNet Network Profiles

The operational properties of a WPAN in a JenNet-IP system are pre-configured via a
set of JenNet network parameters (detailed in Chapter 9). Nine of these parameters
are collected together in a network profile, which defines a combination of well-
matched values for these parameters. Each profile has a unique index in the range 0-
255. Thus, rather than setting each parameter value individually, a profile allows a
group of parameter values to be set collectively by simply referencing the profile index.

The network profile is set on the Co-ordinator. Other devices inherit these parameter
values from their parent when they join the network. It is, however, possible to over-
ride these parameter values from the application (see below).

A set of ten standard network profiles are supplied with the JenNet-IP software. They
are numbered 0-9, where profile 0 is the default profile (and is used if no other profile
is selected) and profiles 8-9 are for the standalone WPANs described in Chapter 11.

Note: In practice, a Router will request a commissioning
key from the Co-ordinator. The application on the Co-
ordinator then obtains the relevant key from the Border-
Router and broadcasts it to all Router nodes.

Note: The JenNet network profile parameters and the
standard network profiles are described in Section 9.2.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 55

Chapter 3
JenNet-IP System Overview

The most appropriate profile to choose depends on both the network size (the total
number of nodes in the network) and the tree type. The tree type is an indication of the
density of the network - it is recommended that a profile for a tree type of:

 "Sparse" is selected for a network with up to 5 nodes per room

 "Bushy" is selected otherwise

Refer to Table 7 in Section 9.2 for details of the standard “Sparse” and “Bushy”
profiles. However, these are only guidelines and experimentation with other settings
may yield benefits in particular environments.

The network profile can be selected either from a device on the LAN/WAN via the
Border-Router or from within the applications on the WPAN nodes.

Remotely via Border-Router

The network profile can be chosen remotely from a device such as a PC on the LAN/
WAN side of the JenNet-IP system. This selection is performed using an interface
which allows interaction with the Border-Router for the network - for example, the NXP
JenNet-IP Border-Router Configuration interface which is built into the Linksys router
provided in NXP evaluation kits that support JenNet-IP. In this case, the relevant
option is provided on the 6LoWPANd sub-tab of the JenNet-IP tab.

This is the preferred profile selection method for a network with a Border-Router.

The profile is passed to each node as it joins the network. Therefore, if the profile is
changed, it may be necessary to re-start the network for the change to take effect.

However, when using standard profiles (only), it is possible to change the profile used
by a running network at any time through the Co-ordinator without having to re-start
the network. The JenNet-IP Border-Router Configuration interface (mentioned above)
uses this facility to implement an automatic profile selection option - if selected, the
most appropriate standard profile is automatically set based on the number of nodes
in the network and their rate of joining (the profile is updated as the network evolves).

Within the WPAN Applications

The application on a node can over-ride the network profile that is passed to the node
as it joins the network. If this profile selection method is used, it is important to ensure
that all nodes in the network are set to use the same profile.

Since the profile is set in the application, this method is not suitable for an application
that may be deployed in a variety of environments, unless there is a way for the user
to configure the setting on each node prior to adding it to the network.

Note: Functions to set and change the network profile
are described in Section 5.3.
56 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.8 Fundamental Operations in JenNet-IP

The fundamental operations on devices in a JenNet-IP system are as follows:

 The control of devices is achieved by writing to MIB variables on the devices

 The monitoring of devices is achieved by reading MIB variables on the devices

Therefore, the applications that run on the devices to be monitored/controlled and on
the devices to perform the monitoring/control must facilitate these operations, as
follows:

 On a device to be monitored and/or controlled (normally a WPAN node):

 To facilitate monitoring, the application must create MIBs and associated
variables and react to write requests for these MIB variables

 To facilitate control, the application must create MIBs and associated
variables, populate them with data and react to read requests for these
MIB variables

 On a device to perform monitoring and/or control (normally a LAN/WAN
device):

 To facilitate monitoring, the application must identify the IPv6 addresses of
devices to be monitored and either submit read requests for MIB variables
on the target devices or configure and receive traps on the MIB variables

 To facilitate control, the application must identify the IPv6 addresses of
devices to be controlled and submit write requests for MIB variables on the
target devices

The coding of these operations in an application is described in Section 4.2 for a
WPAN node and in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086) for a
LAN/WAN device.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 57

Chapter 3
JenNet-IP System Overview

3.9 Low-Energy Devices

JenNet-IP provides support for WPAN ‘low-energy devices’ which have very limited
energy resources. These devices include:

 Devices that are completely self-powered through energy harvesting

 Battery-powered devices that require ultra-long battery life

Typical devices of this type are switches (e.g. light-switch), panic/emergency buttons,
detectors and sensors. The energy harvesting devices can be ‘bursting energy
harvesters’ which generate and store energy in a very short time by electromechanical
means (such as flipping a switch) or ‘trickling energy harvesters’ which generate and
store energy over a long period of time (such as from solar cells).

3.9.1 Principles of Low-Energy Devices

JenNet-IP minimises the power demands on low-energy devices by:

 Employing IEEE 802.15.4 frames that carry the minimum payload necessary to
be useful and secure, thus minimising the amount of energy needed for each
frame transmission

 Not requiring these devices to be full members of the network and allowing
them to only transmit data when they need to (e.g. when a button on the device
is pressed)

In order to minimise energy (and memory) usage, a low-energy device employs a
reduced software stack. It does not run the JenNet-IP stack and transmit JenNet-IP
frames. Instead, a special cut-down version of the IEEE 802.15.4 stack is used in
which the MAC layer is replaced by an NXP-adapted ‘MicroMAC’ layer.

The use of a low-energy device in conjunction with a JenNet-IP network is illustrated
in Figure 10 below.

A command from a low-energy device is forwarded within the WPAN as a multicast in
a JenNet-IP frame.

Low-energy devices cannot receive frames from a JenNet-IP network.

Figure 10: Low-Energy Device and JenNet-IP WPAN

JenNet-IP
WPAN

Target
node

RouterLow-energy device
(source node)

Command in minimal
IEEE 802.15.4 frame

Command re-transmitted
in JenNet-IP frame
58 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
3.9.2 Configuration of Low-Energy Devices

Low-energy devices are not full members of the network and cannot be configured
from within the JenNet-IP system. They must be pre-configured (either in the factory
or during installation using hardware switches or a tool) with the following:

 64-bit IEEE/MAC address to be used to identify the device (always factory-set)

 128-bit security key to be used to authenticate communications with the WPAN

 Fixed 2.4-GHz radio channel (11-26) for communication with the WPAN

The WPAN will need to operate in the fixed radio channel of the low-energy devices.

The IEEE/MAC address is used to generate an IPv6 multicast address that will be
used to identify the destination nodes for transmissions from the device.

3.9.3 Registering a Low-Energy Device with a WPAN

The WPAN Co-ordinator requires prior knowledge of the low-energy devices that will
be permitted to operate with the network. For this purpose, the Co-ordinator must have
access to a ‘white list’ of the IEEE/MAC addresses of these devices as well as their
security keys.

A low-energy device must first be registered with the network as follows:

1. The low-energy device transmits an IEEE 802.15.4 frame (containing its IEEE/
MAC address and security key) to the WPAN.

2. A WPAN Router which receives this frame will recognise it as a ‘low-energy
frame’ and will send a ‘Low Energy Request’ (containing the device’s IEEE/
MAC address) in a JenNet-IP frame to the Co-ordinator.

3. On reaching the Co-ordinator, the request will be passed to the application. It
is then the responsibility of the application to determine whether the device’s
IEEE/MAC address is in the white list of permissible low-energy devices.

The Co-ordinator may, alternatively, receive the low-energy frame directly, in
which case it will generate the ‘Low Energy Request’ itself.

4. If the device is accepted, the application on the Co-ordinator must broadcast a
message through the network, informing other nodes of the admission of the
low-energy device (and passing on its IEEE/MAC address and security key).

Subsequently, when a Router receives a frame from the low-energy device, it will
check that the device is in the list of registered low-energy devices. If this is the case,
the Router will re-transmit the payload in a JenNet-IP frame - this will be a multicast
with a multicast address derived from the IEEE/MAC address of the low-energy
device.

Note: Full details of incorporating low-energy devices in
a JenNet-IP system are provided in Section 4.9.
Implementing the MicroMAC stack on a low-energy
device is described in Appendix K.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 59

Chapter 3
JenNet-IP System Overview

60 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Part II:
JenNet-IP Embedded API
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 61

62 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4. WPAN Application Development

The chapter outlines the main tasks that you are likely to incorporate in a WPAN
application. References are made to the JIP Embedded API functions that you will
need to use in your code. Note that different application programs will be required for
different network nodes, according to the node type (Co-ordinator, Router, End
Device) and functionality (e.g. environmental monitor, light sensor, fire detector).

The essential application tasks covered in this chapter are:

 Starting and forming a JenNet-IP WPAN - see Section 4.1

 Storing data on nodes and transferring data from one node to another (perhaps
in a different WPAN) - Section 4.2

 Forming multicast groups (of nodes) - see Section 4.3

 Obtaining error information arising from network operation - see Section 4.4

 Handling events generated during network operation - Section 4.5

 Entering and leaving sleep mode - see Section 4.6

 Polling for data (by an End Device) - see Section 4.7

 Persisting context data - see Section 4.8

 Using low-energy devices - see Section 4.9

4.1 Starting and Forming a WPAN

The process for starting and forming a WPAN requires a ‘cold start’ to be performed
on each of the network nodes - first on the Co-ordinator, then on the other nodes,
which each joins the network by associating with either the Co-ordinator or a
previously joined Router.

The exception to this type of start is on a device which has woken from sleep with
memory held (see Section 2.9.2), and needs to re-start and re-take its place in the
network - this situation requires a ‘warm start’ to be performed on the device.

The cold start and warm start cases are covered separately in the subsections below.

4.1.1 Performing a Cold Start

A cold start is performed on a node which is starting (Co-ordinator) or joining a WPAN.
The application code for a cold start is similar for all the nodes in the network, but the
data provided for the stack initialisation depends on the node type.

Note: Details of all the API functions and associated
resources referenced in this chapter can be found in
Chapter 5 to Chapter 8.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 63

Chapter 4
WPAN Application Development

On node power-up (or reset), the node’s wireless microcontroller calls the user-
defined AppColdStart() routine which forms the entry point into the application,
allowing you to perform hardware and software initialisation, and start the main
application loop. The essential function calls in the AppColdStart() routine are
illustrated in Figure 11 and described below.

Figure 11: Function Calls in a Cold Start

User Application JenNet-IP
(to/from stack)

vJIP_ConfigureNetwork()

Return from eJIP_Init()

Initialise stack

Processing loop,
including data
transmission

Event Handling

vJIP_StackEvent()

Return

vJIP_PeripheralEvent()

Return

Deals with stack
management events

Deals with
hardware peripheral

events

Return from vJIP_ConfigureNetwork()

vJIP_InitHardware()

Return

eJIP_Init()

Initialise JN51xx
microcontroller

Set JenNet
parameters

AppColdStart()

Data events
(‘set’ and ‘get’ requests)

vJIP_Tick()
64 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Within the AppColdStart() routine, the following functions must be called:

1. v6LP_InitHardware(): This function initialises the JN51xx microcontroller. It
requires no parameter values.

2. eJIP_Init(): This function initialises the protocol stack and accepts a
tsJIP_InitData data structure containing stack initialisation data. The data
supplied through this structure depends on the node type. The elements of the
structure include the following (among others):

 Device type: Co-ordinator, Router or End Device.

 PAN ID: In the case of the Co-ordinator, this is the PAN ID to be used for
the network (if the value 0xFFFF is used, the Co-ordinator will choose a
random PAN ID which does not clash with the PAN IDs of other networks).
For other nodes, the initial value set for the PAN ID is not important.

 Radio channel: In the case of the Co-ordinator, this can be either a fixed
2.4-GHz channel on which the network will operate or a set of channels
from which the Co-ordinator will determine the best channel for the
network. Similarly, for other nodes, this can be either an individual channel
or a set of channels on which the node will search for a potential parent.

 IPv6 address prefix (Co-ordinator only): A 64-bit prefix that will be
applied in assigning IPv6 addresses to all nodes (see Section 3.3.2) - this
prefix will be passed from the Co-ordinator to all joining nodes.

Full details of the tsJIP_InitData structure and its elements are given in
Section 8.1.1.

Provided that the JenNet protocol is enabled, the eJIP_Init() function invokes
the callback function vJIP_ConfigureNetwork(). This is a user-defined
callback function used to set values for the JenNet network parameters (listed
and described in Section 9.1 and Section 9.2).

Note 1: Some JenNet network parameters are included
in a profile (see Section 3.7 and Section 9.2). Functions
are provided for setting and accessing these profile
parameters, and are detailed in Section 5.3. If required,
these functions should be called in the callback function
vJIP_ConfigureNetwork().

Note 2: The JenNet-IP stack uses one of the JN51xx
on-chip timers. By default, this is the Tick Timer, but an
alternative timer can be selected using the JenNet
parameter u8InternalTimer (see Section 9.1).
Whichever timer is used by the stack, the application
must not use this timer for any other purpose.

Note 3: If JenNet security is to be implemented (see
Section 3.6), the function vJIP_EnableSecurity() must
also be called within the callback function
vJIP_ConfigureNetwork().
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 65

Chapter 4
WPAN Application Development

Use of the v6LP_InitHardware() and eJIP_Init() functions is illustrated in the code
fragment below.

PUBLIC void AppColdStart(void)

{

 /* Stack initialisation data structure */

 tsJIP_InitData sJipInitData;

 /* Initialise hardware */

 v6LP_InitHardware();

 /* Initialise application hardware... */

 /* Configure stack */

 sJipInitData.u64AddressPrefix = 0x1234ULL;

 sJipInitData.u32Channel = (1 << 11) | (1 << 12);

 sJipInitData.u16PanId = 0xffff;

 sJipInitData.u16MaxIpPacketSize = 0;

 sJipInitData.u16NumPacketBuffers = 4;

 sJipInitData.u8UdpSockets = 2;

 sJipInitData.eDeviceType = E_JIP_DEVICE_COORDINATOR;

 sJipInitData.u32RoutingTableEntries = 200;

 sJipInitData.u32DeviceId = 0x12345678;

 sJipInitData.u8UniqueWatchers = 16;

 sJipInitData.u8MaxTraps = 64;

 sJipInitData.u8QueueLength = 16;

 sJipInitData.u8MaxNameLength = 16;

 sJipInitData.u16Port = 1873;

 sJipInitData.pcVersion = "VersionString";

 /* Attempt to initialise the JenNet-IP stack */

 if (eJIP_Init(&sJipInitData) != E_JIP_OK)

 {

 /* Stack initialisation failed, stop */

 while(1);

 }

 /* Call main application code... */

}

Following a cold start, the application must call the function vJIP_Tick() in the main
processing loop. This function generates the necessary stack and data events, which
must be handled by the application as described in Section 4.5.

If JenNet security has been enabled using vJIP_EnableSecurity(), the stack event
E_STACK_NODE_AUTHORISE is generated on the Co-ordinator when a Router
node needs the commissioning key of another node that is attempting to join it (see
Section 3.6). The Co-ordinator application must then obtain the relevant
commissioning key from the Border-Router and pass the key into the network using
the JenNet function eApi_CommissionNode(), described on page 97.
66 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.1.2 Performing a Warm Start

A warm start is performed on an End Device that wakes from sleep with memory held
and allows the node to resume its previous operation in the network.

On waking from sleep with memory held, the node’s JN51xx microcontroller calls the
user-defined AppWarmStart() routine, which forms the entry point into the
application, allowing the application to perform hardware and software re-initialisation,
and start the main application loop. The essential function calls in the
AppWarmStart() routine are illustrated in Figure 12 and described below.

Tip: The network formation/joining process can be
speeded up by employing fast commissioning mode,
described in Section 4.1.3.

Note: A warm start will only be performed following
sleep with memory held. The latter can optionally be
enabled in the call to the function vJIP_Sleep(). If
memory is not held during sleep, a cold start will be
performed on waking, as described in Section 4.1.1.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 67

Chapter 4
WPAN Application Development

Within the AppWarmStart() routine, the following functions must be called:

1. v6LP_InitHardware(): This function initialises the JN51xx microcontroller. It
requires no parameter values.

2. iJIP_ResumeStack(): This function resumes the protocol stack from the state
it was in before the node entered sleep mode. The function assumes that
stack context data has been preserved in on-chip memory during sleep.

Figure 12: Function Calls in a Warm Start

User Application JenNet-IP
(to/from stack)

Resume stack

Processing loop,
including data
transmission

Event Handling

vJIP_StackEvent()

Return

Deals with stack
management events

vJIP_InitHardware()

Return

iJIP_ResumeStack()

Re-initialise JN51xx
microcontroller

AppWarmStart()

Return

vJIP_PeripheralEvent()

Return

Deals with
hardware peripheral

events

Data events
(‘set’ and ‘get’ requests)

vJIP_Tick()
68 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Use of the iJIP_ResumeStack() function is illustrated in the code fragment below.

PUBLIC void AppWarmStart(void)

{

 if (iJIP_ResumeStack() != 0)

 {

 /* Failed to start */

 }

 /* Application can now resume... */

}

Following a warm start, the application must call the function vJIP_Tick() in the main
processing loop. This function generates the necessary stack and data events, which
must be handled by the application as described in Section 4.5.

4.1.3 Fast Commissioning Mode

In the network formation/joining process described in Section 4.1.1, a joining node
scans a pre-configured set of channels in searching for a network to join (see Section
2.8). Depending on the channel in which the network operates, this scan may take a
significant length of time to find the network. Fast commissioning mode reduces this
time by using a pre-configured fixed channel for commissioning, which is known by all
potential nodes and is different from the channel used for normal network operation.

Fast commissioning mode can be used to add Router nodes to a network (but not End
Devices). Therefore, the joining device is always a Router.

4.1.3.1 Principles of Fast Commissioning

The basic principles of fast commissioning mode are as follows:

 Co-ordinator: The Co-ordinator enters fast commissioning mode (as the result
of a user input) and transmits Network Announce messages in the fixed fast
commissioning channel for a certain length of time. This message contains the
PAN ID, network key and operational channel of the network, as well as a
special pre-configured fast commissioning PAN ID and security key.

 Router: The joining node ‘listens’ for Network Announce messages in the fast
commissioning channel. On receiving a Network Announce message
containing a valid network key as well as the correct fast commissioning PAN
ID and security key, the node will attempt to join the source node of the
message (it will need to receive two such messages from the same source to
properly configure security). The join attempt will be performed using the
normal operational channel and PAN ID of the network.

On the joining node, fast commissioning mode is implemented between normal
channel scans. Normally, after scanning one channel, there is a random ‘back-off’
period before scanning another channel. If enabled, fast commissioning (listening for
Network Announce messages) is performed during this back-off period.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 69

Chapter 4
WPAN Application Development

If a join attempt fails, the joining node will return to scanning and fast commissioning.

4.1.3.2 Coding Fast Commissioning

If required, fast commissioning mode must be pre-configured by the application. This
configuration is performed in the user-defined callback function
vJIP_ConfigureNetwork(), which is invoked by the initialisation function eJIP_Init().
This must be done on both the Co-ordinator node and the (potential) Router nodes.

To enable and configure fast commissoning mode, the following functions must be
called within the above callback function:

 vApi_ConfigureFastCommission(): This function allows the following fast
commissioning parameters to be specified:

 Channel - this is the fixed channel in which fast commissioning will be
performed (that is, in which Network Announce messages will be sent and
received)

 PAN ID - this is a fixed 16-bit PAN ID which identifies a network that is in
fast commissoning mode

 vSecurityUpdateKey(): This function is used to specify the fast commissioning
security key which is used to authenticate messages exchanged during fast
commissioning. This is a JenNet function which is described on page 96.

On the Co-ordinator node, fast commissioning mode should be initiated by a user
input (e.g. pressing a button) which causes the application to issue a series of Network
Announce messages. Each message is transmitted by calling the function
eApi_SendNetworkAnnounceEnhanced().

4.2 Storing and Transferring Data

This section describes how data is stored within the nodes of a JenNet-IP WPAN and
transferred between nodes (where the source and destination nodes may be in
different WPANs).

On a JenNet-IP node, data is stored as variables in a MIB (MIBs and MIB variables
are introduced in Section 3.4.1). Transferring data to/from a JenNet-IP node involves
writing/reading MIB variables on the node. A node may have more than one MIB (up
to 255 MIBs, in fact), where each MIB is of a particular MIB type (with unique MIB type
identifier) defined as described in Section 4.2.1 - for example, a MIB type may contain
environmental data, such as the last temperature, humidity and wind-speed readings.

The JIP Embedded API is used to manage MIBs, providing functionality to:

 Create a MIB (and its associated variables)

 Discover MIBs and their variables

 Remotely set MIB variable values

 Remotely retrieve MIB variable values

 Monitor MIB variables locally or remotely

The above MIB management tasks are described in the sub-sections below.
70 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.2.1 Creating a MIB and its Variables

A MIB is based on a MIB type, which is statically defined as part of the application
initialisation. One or more MIBs of a defined MIB type can be created on a node
(however, the current release is restricted to only one MIB of each type per node).

Defining a MIB Type

A MIB type is defined as a tsJIP_MibDef structure (see Section 8.1.6) which
contains a 32-bit MIB type identifier and the MIB variables. A MIB type can contain up
to 255 variables, where each variable is defined in a tsJIP_VarDef structure (see
Section 8.1.7) containing information which includes:

 Name (character string) for the variable

 8-bit identifier for the variable

 Type of variable

 Access permissions

 Value indicating valid lifetime of variable (and therefore cache refresh rate)

 Value indicating security applied to the variable

Macros are supplied by the JIP Embedded API to aid in the definition of a MIB type
and its variables - the macros will fill in the relevant structures. The MIB type definition
macros (to be used in the given order) are:

START_DEFINE_MIB() to start the definition process

DEFINE_VAR() to define a variable (must be used for each variable)

END_DEFINE_MIB() to finish the definition process

The above macros are detailed in Section 6.1.1.

Creating and Registering a MIB

Once a MIB type (and its variables) has been defined, a MIB based on the type can
be created through a tsJIP_MibInst structure which includes:

 Index value which identifies MIB

 Pointers to user-defined callback functions used to Set and Get variable values

Note: Data delivery in a JenNet-IP system requires a
destination IPv6 address and UDP port. A ‘socket’
mechanism is implemented to ensure that data arriving
for a particular IPv6 address and port is routed to the
relevant application. Both outgoing and incoming data
packets are buffered by the stack on the local node.
Sockets and buffering are both handled by the JIP
Embedded API, and are transparent to the application.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 71

Chapter 4
WPAN Application Development

Macros are supplied by the JIP Embedded API to aid in the creation of a MIB - the
macros will fill in the relevant structure. The MIB declaration macros (to be used in the
given order) are:

JIP_START_DECLARE_MIB() to start the declaration process

JIP_CALLBACK() to declare a variable of the MIB and specify the Set/Get callback
functions for the variable (must be used for each variable of the MIB)

JIP_END_DECLARE_MIB() to finish the declaration process

The above macros are detailed in Section 6.1.2.

A MIB must be registered with JenNet-IP using the eJIP_RegisterMib() function. Up
to 255 MIBs can be registered per node, each through a separate call to this function.

4.2.2 Remotely Discovering MIBs

The JIP Embedded API provides functions which allow an application to obtain
information on the MIBs on a remote node and the variables within the MIBs.

4.2.2.1 Obtaining List of MIBs

The function eJIP_Remote_QueryMib() can be used to obtain a list of the MIBs on a
remote node (an IPv6 address and port must be specified). It may not be possible to
return the full list of all MIBs from a single call to this function (due to a limit on the
payload of the UDP packet in which the results are returned). Therefore, more than
one call to the function may be required to return the full MIB list, with each call
requesting a specific range of consecutive MIBs. In each call, you must specify the:

 index value (in the range 0-255) of the first MIB to be reported in the resulting
list - the first time the function is called, this parameter should be set to zero
and then increased accordingly for subsequent calls

 maximum number of MIBs to be returned in the list (but this itself will be limited
by the UDP payload size)

This function simply submits a request for a list of MIBs on the remote node and
returns immediately (the function is non-blocking). Feedback on the success of this
request is handled by two user-defined callback functions, as follows:

 The callback function vJIP_Remote_DataSent() is called by the stack to report
the outcome of the attempt to send the ‘query MIB’ request, i.e. whether the
request was successfully transmitted. Note that this function is also used when
sending other JIP requests.

 The callback function vJIP_Remote_QueryMibResponse() is called by the
stack to report whether the request was successful on the remote node, i.e.
whether the list of MIBs was successfully obtained. The function also reports
the list obtained and indicates the number of MIBs which remain unreported
(requiring further calls to eJIP_Remote_QueryMib()).
72 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.2.2.2 Obtaining List of Variables in a MIB

The function eJIP_Remote_QueryVar() can be used to obtain a list of the variables
in a specified MIB on a remote node. It may not be possible to return the full list of MIB
variables from a single call to this function (due to a limit on the payload of the UDP
packet in which the results are returned). Therefore, more than one call to the function
may be required to return the full list, with each call requesting a specific range of
consecutive MIB variables. In each function call, you must specify the:

 index value (in the range 0-255) of the first MIB variable to be reported in the
resulting list - the first time the function is called, this parameter should be set to
zero and then increased accordingly for subsequent calls

 maximum number of variables to be returned in the list (but this itself will be
limited by the UDP payload size)

This function simply submits a request for a list of MIB variables and returns
immediately (the function is non-blocking). Feedback on the success of this request is
handled by two user-defined callback functions, as follows:

 The callback function vJIP_Remote_DataSent() is called by the stack to report
the outcome of the attempt to send the ‘query variable’ request, i.e. whether the
request was successfully transmitted. Note that this function is also used when
sending other JIP requests.

 The callback function vJIP_Remote_QueryVarResponse() is called by the
stack to report whether the request was successful on the remote node, i.e.
whether the list of MIB variables was successfully obtained. The function also
reports the list obtained and indicates the number of variables which remain
unreported (requiring further calls to eJIP_Remote_QueryVar()).

4.2.3 Remotely Setting MIB Variable Values

MIB variable values should be updated by the application on the local node - for
example, when a sensor reading changes, the value of the corresponding local MIB
variable should be updated. However, the JIP Embedded API allows the value of a
MIB variable to be set by a remote application using eJIP_Remote_ID_Set(). This
function simply submits a request to set the value of a remote MIB variable and returns
immediately (the function is non-blocking). Feedback on the success of this request is
handled by two user-defined callback functions, as follows:

 The callback function vJIP_Remote_DataSent() is called by the stack to report
the outcome of the attempt to send the ‘Set variable’ request, i.e. whether the
request was successfully transmitted. Note that this function is also used when
sending other JIP requests.

 The callback function vJIP_Remote_SetResponse() is called by the stack to
report whether the request was successful on the remote node, i.e. whether the
remote MIB variable was successfully set.

Use of the above functions in remotely setting the value of a MIB variable is illustrated
in Figure 13 below.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 73

Chapter 4
WPAN Application Development

4.2.4 Remotely Obtaining MIB Variable Values

The value of a MIB variable can be remotely obtained using the function
eJIP_Remote_TableGet(). This function simply submits a request to get the value of
a remote MIB variable, which may or may not be of the table datatype, and returns
immediately (the function is non-blocking). Feedback on the success of this request is
handled by two user-defined callback functions, as follows:

 The callback function vJIP_Remote_DataSent() is called by the stack to report
the outcome of the attempt to send the ‘Get variable’ request, i.e. whether the
request was successfully transmitted. Note that this function is also used when
sending other JIP requests.

 The callback function vJIP_Remote_TableGetResponse() is called by the
stack only if the MIB variable is a table. The function is called for each table
entry received in the ‘Get variable’ response in order to report the entry. It is
called at least once, even if no table entries were returned in the response
(e.g. the requested entry is not present).

 The callback function vJIP_Remote_GetResponse() is called by the stack to
report whether the request was successful on the remote node, i.e. whether the
remote MIB variable was successfully retrieved. For a MIB variable which is not
the table datatype, the function also reports the obtained value.

Use of the above functions in remotely getting the value of a MIB variable is illustrated
in Figure 14 below.

Figure 13: Remotely Setting a MIB Variable

Application JIP JIP

eJIP_Remote_ID_Set()

MIB ‘Set variable’ request

Node A Node B

MIB ‘Set variable’ response

vJIP_Remote_DataSent()

vJIP_Remote_SetResponse()

Application

‘Set’ callback function for variable
(specified in eJIP_CreateVar())
74 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.2.5 Remote Monitoring of MIB Variables (using Traps)

The variables in a MIB can be automatically monitored by remote applications using
JIP ‘traps’, which work on a similar principle to the industry-standard SNMP traps. A
trap is a mechanism which is associated with a MIB variable and which generates a
notification whenever the value of the variable is changed in the MIB. This notification
is sent to all remote nodes that have registered an interest in the variable.

To use traps, actions must be performed on the local node and on the remote nodes,
as described below.

On Local Node

The generation of a trap notification for a MIB variable is triggered by calling the
function vJIP_NotifyChanged() on the local node. This function may be called by the
application whenever the value of a local MIB variable is changed or whenever the
enabled state of the variable is changed (which determines whether or not the variable
can be accessed). In order to reduce network traffic, the application may call this
function selectively - for example, only when a variable value changes by at least a
certain minimum amount. The trap notification message generated will be then be sent
to any remote nodes that are trapping the variable.

Figure 14: Remotely Getting a MIB Variable

Application JIP JIP

eJIP_Remote_TableSet()

MIB ‘Get variable’ request

Node A Node B

MIB ‘Get variable’ response

vJIP_Remote_DataSent()

vJIP_Remote_GetResponse()

Application

‘Get’ callback function for variable
(specified in eJIP_CreateVar())

vJIP_Remote_TableGetResponse()
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 75

Chapter 4
WPAN Application Development

On Remote Node

In order to automatically receive trap notifications when the value of a MIB variable is
updated, the remote node must register an interest in the variable by calling the
function eJIP_Remote_Trap(). This function simply submits a request to trap the MIB
variable and returns immediately (the function is non-blocking). Feedback on the
success of this request is handled by two user-defined callback functions, as follows:

 The callback function vJIP_Remote_DataSent() is called by the stack to report
the outcome of the attempt to send the ‘remote trap’ request, i.e. whether the
request was successfully transmitted. Note that this function is also used when
sending other JIP requests.

 The callback function vJIP_Remote_TrapResponse() is called by the stack to
report whether the request was successful on the remote node, i.e. whether the
remote MIB variable was successfully trapped.

When a notification for a trapped variable is received on the remote node, the stack
calls the user-defined callback function vJIP_Remote_TrapNotify() to handle the
trap. This function will report the new value of the trapped variable. For more
information on the generation of trap notifications, see “On Local Node” above.

A trapped MIB variable can later be untrapped by calling eJIP_Remote_Untrap().
Again, this function simply submits a request to untrap the remote MIB variable and
returns immediately (the function is non-blocking). Feedback on the success of this
request is handled by the above two user-defined callback functions.

Caution: A trap that has been set up on a remote MIB
variable is lost if either the remote node or the local
device is restarted.

Note: As an alternative to the above, a trap can be set
up on a local MIB variable using the function
eJIP_AddTrap(). In this case, trap notifications will be
sent to a specified IPv6 multicast address and
processed by all nodes in the corresponding multicast
group. For details of multicast groups, see Section 4.3.
76 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.3 Forming Multicast Groups

An IPv6 packet can be sent to (selected) multiple devices. This type of transmission
is referred to as a ‘multicast’.

IPv6 provides the facility of a multicast group, which has a unique IPv6 multicast
address (described in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086)). The
stack on each device that belongs to a multicast group stores the IPv6 multicast
address of the group. A device can belong to more than one multicast group.

An IPv6 packet containing a multicast address is actually broadcast by the source
node on each of its links. The extent of the broadcast is determined by the specified
‘scope’ - see the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086). The stack on
each receiving device determines whether the device is a member of the group
corresponding to the multicast address in the packet (and therefore whether to accept
the packet). If the receiving device is a Router, it will also need to pass on the packet.
An IP Router is able to do this selectively. For each of its links, an IP Router maintains
a list of the groups to which nodes on the link belong. It can therefore intelligently route
a multicast packet down those links which contain nodes that belong to the relevant
group.

Functions are provided to add the local node to and remove it from a multicast group:

 bJIP_AddGroupAddr() is used to add the local node to a multicast group

 bJIP_RemoveGroupAddr() is used to remove the local node from a multicast
group

Before processing the add or remove request, both of these functions invoke the user-
defined callback function bJIP_GroupCallback() to authorise (or refuse) the request.
If the callback function returns an authorisation, the original function modifies the
relevant MIB to fulfil the request.

Therefore, to form a multicast group, an IPv6 multicast address must be assigned to
the group and the function bJIP_AddGroupAddr() must be called on each node
which is to be a member of the group.

Remote access to the IPv6 multicast addresses of the groups to which a node belongs
is provided via the Groups module (MIB) on the node (for details of this MIB, refer to
Appendix F.3.3).

Note 1: The Groups MIB on a node can be used to
remotely add the node to and remove the node from
multicast groups.

Note 2: Although multicast messages may be received
by an End Device (that is awake), these messages are
discarded by the device. Therefore, End Devices should
not be added to a multicast group.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 77

Chapter 4
WPAN Application Development

4.4 Obtaining Error Reports

Some functions of the JIP Embedded API return a value which, if non-zero, signifies
that an error has occurred and that ‘extended error’ information is available. Details of
this error can then be obtained using the function u32JIP_GetErrNo(). When a
function call has produced an error, to obtain the extended error information
u32JIP_GetErrNo() must be called immediately - that is, it must be called before any
other function (since the next function call will reset the extended error value).

The extended error information returned by u32JIP_GetErrNo() is contained in a
32-bit value comprising three distinct parts:

 Bits 7-0 give an ‘error code’ which indicates the source of the error

 Bits 15-8 give ‘error information’ which supplements the error code

 Bits 31-16 are reserved for future use

Details of the error codes and information are provided in Section 8.5.

4.5 Handling Events

Events are generated by the function vJIP_Tick(), which must be called in the main
processing loop of the application. The following event types may be generated and
require a user-defined event handler to be implemented as a callback function:

 Stack events

 Data events

 Peripheral events

These event categories and their handlers are described in the sub-sections below.

4.5.1 Stack Events

The following stack events can be generated on a node (also refer to Section 8.3.1):

 E_STACK_STARTED: Stack has started

 E_STACK_JOINED: Local node has joined a parent

 E_STACK_NODE_JOINED: A child node has joined the local node

 E_STACK_NODE_LEFT: A child node has left the local node

 E_STACK_TABLES_RESET: Routing tables have been reset (on Co-ordinator
or Router) and stack set-up is complete (on any node type)

Note: Application callback functions relating to stack
and data events are executed within the context of the
function vJIP_Tick(). However, callback functions
relating peripheral events are executed in interrupt
context (see Section 4.5.3).
78 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
 E_STACK_RESET: Stack has been reset

 E_STACK_POLL: Local End Device has polled the parent node for data

 E_STACK_NODE_JOINED_NWK (generated on the Co-ordinator): A node has
joined the network

 E_STACK_NODE_LEFT_NWK (generated on the Co-ordinator): A node has
left the network

 E_STACK_NODE_AUTHORISE (generated on the Co-ordinator): A node is
attempting to join the network and its commissioning key needs to be obtained
from the Border-Router

 E_STACK_ROUTE_CHANGE (generated on the Co-ordinator): A node has
moved in the network

 E_STACK_GROUP_CHANGE: One or more multicast addresses have been
added to or removed from network

All of the above events must be handled by a single user-defined callback function,
vJIP_StackEvent(). In this function call, the stack identifies the specific event (from
the above) that has occurred. The stack may also provide additional information about
the event. The callback function is executed in the context of vJIP_Tick().

4.5.2 Data Events

The following data events can be generated on a node (also refer to Section 8.3.2):

 E_DATA_SENT: A data packet has been sent successfully

 E_DATA_SEND_FAILED: An attempt to send a data packet failed

 E_DATA_RECEIVED: A data packet has been received

 E_IP_DATA_RECEIVED: A data packet has been received at the IP layer

 E_6LP_ICMP_MESSAGE: An ICMP message has been passed up to the
application

All of the above events must be handled by a single user-defined callback function,
v6LP_DataEvent(), which is executed in the context of vJIP_Tick().

Note: When the MIB ‘Remote Variable Access’
functions (described in Section 6.4) are used to send
and receive data packets, the v6LP_DataEvent()
function will not be invoked because the stack contains
a dedicated handler for the above events. However, the
v6LP_DataEvent() function must still be included within
the application to catch events not handled by the stack.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 79

Chapter 4
WPAN Application Development

4.5.3 Peripheral Events

A peripheral event can be generated by one of the integrated peripherals of the
JN51xx microcontroller (e.g. ADC, timer). These peripherals and their associated
events are described in the JN516x Integrated Peripherals API User Guide
(JN-UG-3087) and JN514x Integrated Peripherals API User Guide (JN-UG-3066). All
peripheral events must be handled by a single user-defined callback function,
vJIP_PeripheralEvent(). This function call identifies the peripheral that generated the
event and the source of this event within the peripheral. The callback function is
executed in interrupt context.

Peripheral events should be queued for processing in the main application loop if
handling them will take a significant amount of time, if the callback function needs to
make calls into the stack or if the callback function needs to access Non-Volatile
Memory (NVM).

4.6 Entering and Leaving Sleep Mode

Some network devices, particularly End Devices, may only need to be active for a
small proportion of time in order to collect and transmit/receive data (e.g. once per
hour or once per day). Since such devices are often powered by batteries, it is
desirable to conserve power when the device is not active by putting it into a low-
power sleep mode. For more information on sleep modes, refer to Section 2.9.2.

4.6.1 Entering Sleep Mode

Sleep mode is entered on a device by calling the function vJIP_Sleep(). This function
allows the sleep duration to be specified. It also provides the option to preserve the
contents of on-chip volatile memory during sleep (sleep with memory held), and
therefore to preserve both application and stack context data.

Note 1: If the device enters sleep without memory held,
context data can be preserved by storing it in Non-
Volatile Memory (NVM) before entering sleep (and then
retrieving this data on waking from sleep). The
application can do this using the supplied JenOS
Persistent Data Manager (PDM) - refer to Section 4.8.

Note 2: A device sending a series of packets to an End
Device Sleep can request sleep to be postponed to
allow all the packets to be received before the End
Device enters sleep mode - refer to Section 4.6.3.
80 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
4.6.2 Leaving Sleep Mode

The actions taken on waking from sleep depend on whether the contents of on-chip
volatile memory were preserved during sleep:

 For sleep with memory held, waking from sleep results in a warm start through
the routine AppWarmStart(), as described in Section 4.1.2.

 For sleep without memory held, waking from sleep results in a cold start
through the routine AppColdStart(), as described in Section 4.1.1.

4.6.3 ‘Stay Awake’ Request

If a device needs to send a series of packets to an End Device, the source device can
request the End Device to stay awake (postpone entering sleep mode) in order to
receive the packets. This request is implemented by setting the ‘stay awake’ flag in a
packet. Thus, this flag may be set in all packets except the final one of the series
(setting the flag requests the End Device to stay awake long enough to receive at least
one further packet).

The ‘stay awake’ flag is bit 7 in the handle of the JIP command within the packet (for
command formats, see Appendix F.4). This handle is a user-defined identifier for the
command, except bit 7 is reserved for the ‘stay awake’ flag. The handle is specified in
the MIB function which is called to send the command (e.g. eJIP_Remote_ID_Set()).

On receiving a packet, the stack on the End Device checks the ‘stay awake’ flag. If this
bit is set, the user-defined callback function vJIP_StayAwakeRequest() is invoked,
which takes the appropriate action:

 Since the End Device is not obliged to stay awake, the request may be ignored
(for example, the End Device may not be able to accept such requests due to
limited power).

 To honour the request, a timer should be implemented to postpone sleep.

If the End Device does not stay awake to receive further packets, the packets will be
buffered on the parent of the End Device to be collected by data polling on wake-up
(see Section 4.7).

Note 1: If the device wakes from sleep without memory
held but application context data has been stored in
Flash memory (see Note above), code to retrieve this
data must be included in AppColdStart() using the
JenOS PDM functions (see Section 4.8) or the Flash
functions of the Integrated Peripherals API.

Note 2: While an End Device is asleep, data arriving for
the End Device is buffered by its parent. On waking from
sleep, the End Device should poll its parent for any
pending data. This polling is normally performed
automatically but is configurable - see Appendix A.4.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 81

Chapter 4
WPAN Application Development

4.7 Data Polling

Data polling in wireless networks was introduced in Section 2.9.3. An End Device that
goes through sleep episodes (in order to conserve power) may not be able to receive
data sent to it. Therefore, data destined for the End Device is buffered on its parent
and the End Device must poll its parent for this data while awake.

4.7.1 Polling Methods

There are two methods that an End Device can employ to poll its parent:

 Auto-polling: The End Device periodically polls its parent with a pre-
configured period (set to 5 seconds by default) and also automatically polls its
parent on waking from sleep. Auto-polling is enabled by default on an End
Device in a JenNet-IP network. The configuration of auto-polling is described in
Appendix A.4.

 Manual polling: The application on the End Device uses the function
eJIP_Poll() to poll its parent.

In both of the above cases, a single poll may not retrieve all the pending data for the
End Device. Therefore, after each poll (manual or auto), the function eJIP_Poll()
should be called (at least once) until there is no further pending data.

The parent will store a pending packet indefinitely, but there is limited buffer space for
packet storage on the parent node. If the buffer is full when a new packet arrives, the
oldest packet will be automatically deleted to make room for the new one. However,
network-level packets always take priority over data packets.

4.7.2 Polling Events

The events that are generated following a poll are as follows:

 If a poll results in data being received, the stack event E_STACK_POLL of the
type E_JIP_POLL_DATA_READY is generated. The received data is usually
handled by the stack and is not passed to the application (if the data is destined
for the application, the relevant data event will also be generated).

 If a poll results in no data, the stack event E_STACK_POLL of the type
E_JIP_POLL_NO_DATA is generated.

Therefore, if a poll (manual or auto) results in an E_JIP_POLL_DATA_READY event,
there may be more pending data on the parent and the function eJIP_Poll() should be
called repeatedly until the event E_JIP_POLL_NO_DATA is generated.

The above events and the IEEE 802.15.4 messages that result from polling are
illustrated in Figure 15 below - in this example, the polling is initiated manually by a
call to eJIP_Poll().
82 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Figure 15: Events and Messages Resulting from Data Polling

Note: Polling may be the main activity of an End Device
while it is awake. The messages depicted in Figure 15
may therefore be important in battery life estimates for
the End Device. In order to perform these calculations,
you will also need transceiver power figures from your
wireless microcontroller datasheet as well as frame
details from the IEEE 802.15.4 standard.

Application Stack Stack

Data Request (MAC)

End Device Parent

eJIP_Poll()

Data Request ACK (MAC)

Data Response
(MAC, JenNet or JIP)

Over-Air Messages in
IEEE 802.15.4 Frames

E_STACK_POLL
[E_JIP_POLL_DATA_READY]

Stack services
Data Request

Data Request (MAC)
eJIP_Poll()

Data Request ACK (MAC)
E_STACK_POLL

[E_JIP_POLL_NO_DATA]

Stack services
Data Request
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 83

Chapter 4
WPAN Application Development

4.8 Persisting Context Data

Data needed for the operation of a wireless network node is normally stored in on-chip
RAM. This includes data that may evolve during node operation, e.g. context data for
the network stack and application data. This data is only maintained in RAM while the
node is powered and will normally be lost during an interruption to the power supply
(e.g. power failure or battery replacement).

In order for the node to recover from a power interruption with continuity of service,
provision must be made for storing a back-up of context data in Non-Volatile Memory
(NVM), normally Flash memory. This data can then be recovered during a re-boot
following power loss, allowing the node to resume its role in the network.

The storage and recovery of context data can be handled using the Persistent Data
Manager (PDM), which is provided in the JenNet-IP software. The supplied PDM is
identical to the PDM module in JenOS (Jennic Operating System). Therefore, for
details of the PDM, you should refer to the JenOS User Guide (JN-UG-3075), although
you do not need to use JenOS in conjunction with JenNet-IP.

4.9 Using Low-Energy Devices

Low-energy devices were introduced in Section 3.9. This section provides the
implementation details for using a low-energy device in conjunction with a JenNet-IP
WPAN. The low-energy device is not formally a part of the JenNet-IP WPAN but its
use with the network requires some pre-configuration and application coding on both
the low-energy device and the WPAN nodes.

4.9.1 Implementation on Low-Energy Device

A low-energy device must be pre-configured with an IEEE/MAC address, a 128-bit
security key and a fixed 2.4-GHz radio channel (see Section 3.9.2). This configuration
is manufacturer-specific but may be conducted in the factory or during installation
using hardware switches on the device or a configuration tool.

The software stack used on a low-energy device is a reduced version of the IEEE
802.15.4 stack in which the MAC layer is replaced by NXP’s ‘MicroMAC’ layer. Thus,
the low-energy device does not need any JenNet-IP software. However, the
MicroMAC is supplied in the JN516x JenNet-IP SDK (JN-SW-4065).

Details of how to implement the MicroMAC on a low-energy device are provided in
Appendix K. This information includes how to send an IEEE 802.15.4 frame to the
JenNet-IP WPAN. A frame from a low-energy device is always interpreted within the

Note: The JenOS User Guide states that stack context
data will automatically be saved to NVM when changes
take place. This is not the case for the JenNet-IP stack -
the application must store and retrieve stack context
data as part of the application context data.
84 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
WPAN as a JenNet-IP ‘Set by ID’ command to remotely set a MIB variable on a WPAN
node in order to achieve the desired action (e.g. switching on a light). It is the
responsibility of the application to manage the 4-byte frame counter - the three most
significant bytes of the frame counter are inserted into the frame payload and the least
significant byte is used as the sequence counter in the frame header. The low-energy
frame format is detailed in Appendix F.5.

4.9.2 Implementation in JenNet-IP WPAN

The low-energy device implementation details for the WPAN nodes are provided in the
sub-sections below for the Co-ordinator, a Router and any target node of a frame.

4.9.2.1 On the Co-ordinator

The Co-ordinator plays a vital role in registering a low-energy device with the WPAN.

Pre-configuration

In order to use one or more low-energy devices with the WPAN, certain pre-
configuration is necessary on the Co-ordinator, as follows:

 Radio channel: The 2.4-GHz radio channel to be used by the WPAN must be
fixed by the Co-ordinator to match the channel used by the low-energy devices
(therefore, no channel search should be performed during network formation).
The channel is set through eJIP_Init() during initialisation - see Section 4.1.1.

 IEEE/MAC addresses: A ‘white list’ must be created on the Co-ordinator (or on
the LAN/WAN side of the Border-Router) containing the IEEE/MAC addresses
(and security keys) of all the low-energy devices that could potentially be
registered with the system. This white list is application-specific.

 Security keys: For each low-energy device in the white list, the 128-bit security
key of the device must also be stored in advance. This key is used to encrypt
and decrypt the payloads of frames transmitted from the low-energy device to
the WPAN (but not within the WPAN, where JenNet-IP security is used).

 Registered device list: The stack on the Co-ordinator maintains a list of
registered low-energy devices. The maximum number of devices that can be
stored in this list can be set by the application through the following variable:

extern PUBLIC uint8 u8JNT_LowEnergyDevices;

The default value is 10. If another value is required, this must be set before
initialising the stack.

Note 1: The process for registering a low-energy device
with a WPAN is outlined in Section 3.9.3. It may be
useful to refer to this process in studying this section.

Note 2: Since End Devices do not use multicast
messages, they should not be targets for commands
from low-energy devices.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 85

Chapter 4
WPAN Application Development

Registration

The first time a low-energy device sends an IEEE 802.15.4 frame to the WPAN, the
device is registered with the Co-ordinator. The Co-ordinator may receive the low-
energy frame directly or may receive a ‘Low Energy Request’ in a JenNet-IP frame
from a Router (see Section 4.9.2.2). In either case, the JenNet-IP stack on the Co-
ordinator generates an E_STACK_LOW_ENERGY_SEEN event, which is passed to
the application via the vJIP_StackEvent() callback function. This event contains the
IEEE/MAC address of the low-energy device (in a MAC_ExtAddr_s structure).

It is then the responsibility of the application to perform the following steps:

1. Check for the IEEE/MAC address in the white list to validate that the source
device is an authorised low-energy device.

2. If the low-energy device is valid, send its IEEE/MAC address and security key
to the rest of the WPAN in a broadcast message, sent using the function
eApi_SendLowEnergyInform() - also see Section 4.9.2.2.

As a result of the call to eApi_SendLowEnergyInform(), the stack on the Co-
ordinator adds the device to the local list of registered low-energy devices.

4.9.2.2 On a Router

Any Router in the WPAN could potentially receive a frame from a low-energy device.
Therefore, a Router must be prepared to handle these frames.

Pre-configuration

In order to use one or more low-energy devices with the WPAN, certain pre-
configuration is necessary on each Router, as follows:

 Radio channel: The 2.4-GHz radio channel to be used by the Router must be
fixed to match the channel used by the low-energy devices and Co-ordinator
(therefore, no channel search should be performed during network joining). The
channel is set through eJIP_Init() during initialisation - see Section 4.1.1.

 Registered device list: The stack on the Router maintains a list of registered
low-energy devices. This list is not accessible to the application but the
maximum number of devices that can be stored in the list can be set by the
application through the following variable:

extern PUBLIC uint8 u8JNT_LowEnergyDevices;

The default value is 10. If another value is required, this must be set before
initialising the stack.

Note: The function eApi_SendLowEnergyInform() can
also be used to unregister a low-energy device from the
WPAN. In this case, the device is removed from the list
of registered low-energy devices.
86 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Registration/Operation

When a Router receives an IEEE 802.15.4 frame, the stack on the Router checks
whether the source IEEE/MAC address of the frame corresponds to a low-energy
device in the local registered device list:

 If the IEEE/MAC address in the frame header is not in the registered device list
and the frame length is within the expected range for a low-energy frame, the
Router forwards the device address to the Co-ordinator in a ‘Low Energy
Request’. The Co-ordinator handles this request as described in Section
4.9.2.1. If the device is accepted by the Co-ordinator, the Router eventually
receives an acceptance message from the Co-ordinator (as a result of the call
to eApi_SendLowEnergyInform()) and the stack on the Router adds the
device to the local list of registered low-energy devices.

 If the IEEE/MAC address is already in the registered device list, the Router
forwards the command in a multicasted JenNet-IP frame. It derives the
multicast address from the IEEE/MAC address of the source device (see
Section 4.9.2.3).

4.9.2.3 On a Target Node

The target WPAN node for a command from a low-energy device can be a Router or
the Co-ordinator. The command is forwarded within the WPAN in a multicasted
JenNet-IP frame. Therefore, the target node cannot be an End Device since these
devices discard multicast frames.

The IPv6 multicast address for a frame from a low-energy device is generated from
the IEEE/MAC address of the device, as follows.

0xFF15::<IEEE/MAC address>:0000

If a node (Router or Co-ordinator) is to be a member of the multicast group for a low-
energy device then the node must add itself to the multicast group. The application on
the node can do this using the function bJIP_AddGroupAddr().

Note 1: All the Routers in the WPAN will receive the
acceptance message from the Co-ordinator and add the
device to the local list of registered low-energy devices.

Note 2: The frame transmitted by the low-energy device
to register with the WPAN may contain a valid command
(e.g. to switch on a light), but this command may not be
acted on (beyond the registration process).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 87

Chapter 4
WPAN Application Development

88 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
5. JIP Embedded API General Functions

This chapter details all the functions of the JIP Embedded API that are not related to
MIBs. These functions are defined in the header files jip.h and api.h.

These general functions are divided into the following categories:

 Stack management functions, detailed in Section 5.1

 Stack mode functions, detailed in Section 5.2

 Network profile functions, detailed in Section 5.3

 Data transfer functions, detailed in Section 5.4

 IPv6 address functions, detailed in Section 5.5

 IP functions, detailed in Section 5.6

5.1 Stack Management Functions

This section describes the functions for managing the stack, including initialising it and
putting the device into sleep mode, as well as a function for obtaining error information
on the last function call.

The stack management functions are listed below, along with their page references:

Function Page

v6LP_InitHardware 90

eJIP_Init 91

iJIP_ResumeStack 92

vJIP_Tick 93

vJIP_Sleep 94

u32JIP_GetErrNo 95

vJIP_EnableSecurity 96

vApi_DeleteChild 98

vApi_ConfigureFastCommission 99

eApi_SendNetworkAnnounceEnhanced 100

eApi_SendLowEnergyInform 101
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 89

Chapter 5
JIP Embedded API General Functions

v6LP_InitHardware

Description

This function initialises the JN51xx microcontroller, and must be called as part of the
application’s cold start routine AppColdStart() and warm start routine
AppWarmStart().

Parameters

None

Returns

None

 void v6LP_InitHardware(void);
90 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eJIP_Init

Description

This function initialises the JenNet-IP stack. You must call this function after calling
v6LP_InitHardware() and before calling other JIP Embedded API functions. The
initialisation data is passed into the function by means of a structure of type
tsJIP_InitData - for details of this structure, refer to Section 8.1.1. This initialisation
data includes values for some of the JenNet parameters detailed in Chapter 9.

Before passing this structure into the function, you are advised to first perform a
‘memset’ operation on the structure, in order to set its elements to zero values, and
then set individual elements to the desired values (if required).

Provided JenNet is enabled in the stack initialisation structure, this function will
invoke the callback function vJIP_ConfigureNetwork(). This callback function sets
the JenNet parameters and will over-write those that have already been set by this
function, eJIP_Init().

Parameters

*psInitData Pointer to a structure containing the stack initialisation data
(see Section 8.1.1).

Returns

E_JIP_ERROR_FAILED

E_JIP_OK

 teJIP_Status eJIP_Init(tsJIP_InitData *psInitData);

Caution: If using a JN51xx high-power module, the function
vAHI_HighPowerModuleEnable() from the Integrated
Peripherals API must be called after eJIP_Init(). If it is called
before the stack is initialised, the radio will not transmit.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 91

Chapter 5
JIP Embedded API General Functions

iJIP_ResumeStack

Description

This function is used to resume the protocol stack after a device wakes from sleep
with memory held.

Include this function in the device’s warm start routine AppWarmStart(), which is
called by the device when it wakes from sleep with memory held. You must call this
function after calling v6LP_InitHardware() and before calling other JIP Embedded
API functions (for cold or warm start).

Parameters

None

Returns

0 if successful; any other value indicates an error

 int iJIP_ResumeStack(void);
92 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_Tick

Description

This function must be called in the main processing loop of the application to
generate stack and data events. These events must then be handled as described in
Section 4.5.

Parameters

None

Returns

None

 void vJIP_Tick(void);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 93

Chapter 5
JIP Embedded API General Functions

vJIP_Sleep

Description

This function puts a network device to sleep for the specified period of time. The
function is normally used with End Devices.

The function provides the option to preserve the contents of memory during sleep
(sleep with memory held), to allow the node to easily resume operation on waking
from sleep. If memory contents are not preserved (sleep without memory held), the
stack will initiate a cold start on waking from sleep and attempt to re-join the network
as a new node.

In the case of sleep without memory held, the application can store its context data
in non-volatile memory (such as Flash memory) while asleep. To save and later
retrieve context data, the application can use the Persistent Data Manager (PDM)
provided in the JenNet-IP software. The supplied PDM is identical to the PDM
module in JenOS (Jennic Operating System) - for details of the PDM, you should
refer to the JenOS User Guide (JN-UG-3075). Also refer to Section 4.8.

Parameters

bMemoryHold Determines whether contents of memory will be preserved
during sleep:

TRUE: Preserve memory contents
FALSE: Do not preserve memory contents

u32SleepPeriodInMs Sleep duration, in milliseconds

Returns

None

void vJIP_Sleep(bool_t bMemoryHold,
uint32 u32SleepPeriodInMs);
94 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
u32JIP_GetErrNo

Description

This function returns extended error information for the most recent error.

The function is used to obtain the error conditions arising from an API function call.
It must be called once the API function has returned and before another API function
is called. This is because each API function resets the extended error information to
zero and then sets it the appropriate value at the end of execution.

A 32-bit value is returned by this function, but only bits 15-0 are valid (see below),
with bits 31-16 reserved for future use.

Parameters

None

Returns

32-bit value in which the lower 16 bits (bits 15-0) represent extended error
information - bits 7-0 give an error code and 15-8 give further error information, as
defined in the tables in Section 8.5.

 uint32 u32JIP_GetErrNo(void);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 95

Chapter 5
JIP Embedded API General Functions

vJIP_EnableSecurity

Description

This function can be used to enable JenNet security on the local node. If required,
the function must be called during initialisation in the user-defined callback function
vJIP_ConfigureNetwork(). Security is described in Section 2.8 and Section 3.6.

The JenNet function vSecurityUpdateKey() (described below) can be used to set
the network key (on the Co-ordinator) or a commissioning key.

The JenNet function eApi_CommissionNode() (described on the next page) can be
used on the Co-ordinator to pass a node’s commissioning key into the network.

Parameters

None

Returns

None

vSecurityUpdateKey()

Description

This JenNet function can be used to set a security key on the local node.

Parameters

u8KeyIndex Type of key to set:
0 - network key (on Co-ordinator only)
1 - commissioning key
2 - fast commissioning key (on Co-ordinator or Router only)

*psSecurityKey Pointer to following structure containing 128-bit key to be set:

typedef struct

{

 uint32 u32KeyVal_1; /* Least significant word */

 uint32 u32KeyVal_2;

 uint32 u32KeyVal_3;

 uint32 u32KeyVal_4; /* Most significant word */

} tsSecurityKey;

Returns

None

 void vJIP_EnableSecurity(void);

 void vSecurityUpdateKey(uint8 u8KeyIndex,
tsSecurityKey *psSecurityKey);
96 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eApi_CommissionNode()

Description

This JenNet function can be used on the Co-ordinator to distribute a commissioning key (of a
particular node) throughout the network.

The function should be called after the stack event E_STACK_NODE_AUTHORISE has been
generated on the Co-ordinator to indicate that a Router has requested the commissioning key
of another node that is attempting to join it. The application must obtain the requested key from
the Border-Router and then call this function to pass the obtained key into the network (and
therefore back to the requesting Router). This is illustrated in the code example below.

Parameters

*psDeviceAddr Structure containing IEEE/MAC address of node for which
commissioning key is being supplied (see Section 8.1.3)

*psSecurityKey Pointer to following structure containing 128-bit key:

typedef struct

{

 uint32 u32KeyVal_1; /* Least significant word */

 uint32 u32KeyVal_2;

 uint32 u32KeyVal_3;

 uint32 u32KeyVal_4; /* Most significant word */

} tsSecurityKey;

Returns

 E_JENNET_SUCCESS

 E_JENNET_DEFERRED

 E_JENNET_ERROR

Example
PUBLIC void vJIP_StackEvent(teJIP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen)
{
 switch (eEvent)
 {
 case E_STACK_NODE_AUTHORISE:
 {
 MAC_ExtAddr_s sCommNodeAddr;
 /* Get MAC address from incoming data (memcpy to avoid any alignment issues) */
 memcpy((uint8 *)&sCommNodeAddr, pu8Data, 8);
 /* Find commissioning key for this address (not shown here) */
 /* Use JenNet to send key to network */
 (void)eApi_CommissionNode(&sCommNodeAddr, &sCommissioningKey);
 }
 break;
 }
}

teJenNetStatusCode eApi_CommissionNode(
MAC_ExtAddr_s *psDeviceAddr,
tsSecurityKey *psSecurityKey);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 97

Chapter 5
JIP Embedded API General Functions

vApi_DeleteChild

Description

This function can be used to remove a child node from the network. It must be called
on the immediate parent of the child. The child node is specified using its IEEE/MAC
address.

The function is particularly useful when operating a JenNet-IP network in standalone
mode (see Chapter 11). The pseudo-Co-ordinator of a standalone network can have
a maximum number of children, determined by the JenNet Parameter
u8MaxChildren (see Section 9.2) which is set to 10 by default. The pseudo-Co-
ordinator is normally a remote control unit and, once commissioned, a node does not
need to remain a child of the pseudo-Co-ordinator in order to be controlled.
Therefore, this function can be used to break this parent-child relationship to ensure
that sufficient child places are available to allow further nodes to join and be
commissioned by the remote control unit.

Parameters

*psAddr Pointer to structure containing IEEE/MAC address of child
node to be removed

Returns

None

void vApi_DeleteChild(MAC_ExtAddr_s *psAddr);
98 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vApi_ConfigureFastCommission

Description

This function can be used to configure fast commissioning mode on the Co-ordinator
or on a Router which may potentially join the network. The radio channel in which fast
commissioning will be conducted must be specified as well as a 16-bit PAN ID that
will be used by the network when in fast commissioning mode (these values are
different from those used in normal operational mode). The function must be called
within the user-defined callback function vJIP_ConfigureNetwork().

Fast commissioning mode is described in Section 4.1.3.

Parameters

u8Channel Radio channel, in the range 11-26, to be used for fast
commissioning

u16PanId PAN ID to be used for fast commissioning

Returns

None

void vApi_ConfigureFastCommission(uint8 u8Channel,
uint16 u16PanId);

Note: A fast commissioning security key must also be pre-
defined using the JenNet function vSecurityUpdateKey(),
described on page 96.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 99

Chapter 5
JIP Embedded API General Functions

eApi_SendNetworkAnnounceEnhanced

Description

This function can be used on the Co-ordinator to transmit a Network Announce
message when in fast commissioning mode. The sent message contains the PAN ID,
network key and operational channel of the network, as well as the pre-configured
fast commissioning PAN ID and security key. The last two items must be defined as
follows:

 The fast commissioning PAN ID must be pre-defined using the function
vApi_ConfigureFastCommission()

 The fast commissioning security key must be pre-defined using the JenNet function
vSecurityUpdateKey()

The above two functions must be called within the user-defined callback function
vJIP_ConfigureNetwork().

Fast commissioning mode is described in Section 4.1.3.

Parameters

None

Returns

E_JENNET_SUCCESS

E_JENNET_DEFERRED

E_JENNET_ERROR

teJenNetStatusCode
 eApi_SendNetworkAnnounceEnhanced(void);
100 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eApi_SendLowEnergyInform

Description

This function can be called on the Co-ordinator to inform the rest of the WPAN that
a low-energy device is to be registered with or unregistered from the JenNet-IP
system. As a result, the Co-ordinator and all Router nodes should add or remove the
device in the local list of registered low-energy devices (this list maintenance is
performed by the stack on the nodes).

The message that is sent as a result of this function call contains the IEEE/MAC
address and security key of the low-energy device, which are specified in this
function.

Low-energy devices are introduced in Section 3.9 and their implementation is
described in Section 4.9.

Parameters

psAddr Pointer to structure containing the 64-bit IEEE/MAC address of the
low-energy device

pu8Key Pointer to a location containing the 128-bit security key of the low-
energy device

eStatus Action to take on Router nodes, one of:
E_LEF_ADD (Add low-energy device to local list)
E_LEF_DELETE (Remove low-energy device from local list)

Returns

E_JENNET_SUCCESS

E_JENNET_DEFERRED

E_JENNET_ERROR

teJenNetStatusCode eApi_SendLowEnergyInform(
MAC_ExtAddr_s *psAddr,
uint8 *pu8Key,
teLowEnergyStatus eStatus);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 101

Chapter 5
JIP Embedded API General Functions

5.2 Stack Mode Functions

This section describes the functions concerned with the JenNet-IP stack mode. The
stack mode value is a 16-bit bitmap containing various data items (see the function
descriptions). The value is transmitted as part of the beacon payload and is used by
joining devices as part of the criteria for filtering received beacons - a joining device
will discard beacons from other nodes that do not use the same stack mode.

The stack mode functions are listed below, along with their page references:

Function Page

vApi_SetStackMode 103

u16Api_GetStackMode 104
102 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vApi_SetStackMode

Description

This function can be used to set the stack mode value on the local node. This value
is a 16-bit bitmap containing the following data items:

Parameters

u16ModeMask Bitmap containing the stack mode value to be set (see above).
The following macros are also available:
NONE_GATEWAY_MODE (0x0001)
CMSN_MODE (0x0002)

Returns

None

void vApi_SetStackMode(uint16 u16ModeMask);

Bits Name Description Default

15-8 Stack version These bits should be set to zero, as the stack modi-
fies these bits itself as required. Currently, the inter-
nally set value is 1

1

7-2 - These bits are unused and should be set to zero 0

1 Commissioning
mode

1 - enable commissioning mode
0 - disable commissioning mode

0

0 Standalone mode 1 - enable standalone (non-gateway) mode
0 - disable standalone (non-gateway) mode
If set to 0, beacon responses will be automatically
sent when a device joins the network

0

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 103

Chapter 5
JIP Embedded API General Functions

u16Api_GetStackMode

Description

This function can be used to obtain the stack mode value of the local node. This value
is a 16-bit bitmap containing the following data items:

Parameters

None

Returns

16-bit bitmap containing the obtained stack mode value (see above)

uint16 u16Api_GetStackMode(void);

Bits Name Description Default

15-8 Stack version These bits are set by the stack. Currently, the inter-
nally set value is 1

1

7-2 - These bits are unused and should read as zero 0

1 Commissioning
mode

1 - commissioning mode enabled
0 - commissioning mode disabled

0

0 Standalone mode 1 - standalone (non-gateway) mode enabled
0 - standalone (non-gateway) mode disabled
If set to 0, beacon responses are automatically sent
when a device joins the network

0

104 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
5.3 Network Profile Functions

This section describes the functions concerned with JenNet network profiles and their
parameters (described in Section 9.2). If required, these functions should be called in
the callback function vJIP_ConfigureNetwork(). Normally, the desired profile should
be set on the Co-ordinator - other devices inherit the profile parameter values from
their parent when they join the network, but the application can over-ride these
parameter values using these functions.

The network profile functions are listed below, along with their page references:

Function Page

bJnc_SetJoinProfile 106

bJnc_SetRunProfile 107

vJnc_GetNwkProfile 108

u8GetCurJoinProfile 109

u8GetCurRunProfile 110

bJnc_ChangeJoinProfile 111

Note 1: JenNet network profiles are introduced in
Section 3.7. The network profile parameters and the
standard profiles are detailed in Section 9.2.

Note 2: The network profile parameters are divided into
two categories - 'join parameters' and 'run parameters'.
It is possible to use the join parameters of one profile
with the run parameters of another profile.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 105

Chapter 5
JIP Embedded API General Functions

bJnc_SetJoinProfile

Description

This function can be used to set the network ‘join profile’ on the Co-ordinator (the
parameter values in this profile will be inherited by devices that join the network).
Only the join parameters of a network profile are set by this function
(u8MinBeaconLQI, u16ScanBackOffMin, u16ScanBackOffMax,
u16EstRtBackOffMin, u16EstRtBackOffMax).

A standard profile or a custom profile can be specified. The ten standard profiles
supplied with the JenNet-IP software are numbered 0 to 9.

 If the function parameter u8ProfileIndex is set to a value in the range 0-9, the
corresponding standard profile will be used and the function parameter psProfile will be
ignored.

 If u8ProfileIndex is set to PROFILE_USER (255), a custom profile will be used which
must be specified through psProfile.

 All other values of u8ProfileIndex are invalid.

Parameters

u8ProfileIndex Index value of network profile to be used:

0-9: Use standard profile with specified index
PROFILE_USER (255): Use custom profile specified via psProfile
Any other value: Undefined

psProfile Pointer to custom network profile to use (this parameter is ignored
if a standard profile is specified via u8ProfileIndex)

Returns

TRUE if join profile successfully set, FALSE otherwise

bool_t bJnc_SetJoinProfile(uint8 u8ProfileIndex,
const tsNwkProfile *psProfile);
106 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
bJnc_SetRunProfile

Description

This function can be used to set the network ‘run profile’ on the Co-ordinator (the
parameter values in this profile will be inherited by devices that join the network).
Only the join parameters of a network profile are set by this function
(u8MaxChildren, u8MaxSleepingChildren, u8MaxFailedPkts,
u8MaxBcastTTL, u16RouterPingPeriod).

A standard profile or a custom profile can be specified. The ten standard profiles
supplied with the JenNet-IP software are numbered 0 to 9.

 If the function parameter u8ProfileIndex is set to a value in the range 0-9, the
corresponding standard profile will be used and the function parameter psProfile will be
ignored.

 If u8ProfileIndex is set to PROFILE_USER (255), a custom profile will be used which
must be specified through psProfile.

 All other values of u8ProfileIndex are invalid.

Parameters

u8ProfileIndex Index value of network profile to be used:

0-9: Use standard profile with specified index
PROFILE_USER (255): Use custom profile specified via psProfile
Any other value: Undefined

psProfile Pointer to custom network profile to use (this parameter is ignored
if a standard profile is specified via u8ProfileIndex)

Returns

TRUE if run profile successfully set, FALSE otherwise

bool_t bJnc_SetRunProfile(uint8 u8ProfileIndex,
const tsNwkProfile *psProfile);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 107

Chapter 5
JIP Embedded API General Functions

vJnc_GetNwkProfile

Description

This function can be used to obtain the network profile that is currently in use (the full
profile, including both join and run parameters). The function fills in the supplied
structure with the obtained profile parameter values.

Parameters

*psProfile Pointer to structure to receive current network profile

Returns

None

void vJnc_GetNwkProfile(tsNwkProfile *psProfile);
108 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
u8GetCurJoinProfile

Description

This function can be used to obtain the index of the network profile to which the
current ‘join parameter’ values belong (u8MinBeaconLQI, u16ScanBackOffMin,
u16ScanBackOffMax, u16EstRtBackOffMin, u16EstRtBackOffMax). If they
are from a standard profile, the function will return the relevant profile index in the
range 0-9, otherwise a custom index will be returned.

Parameters

None

Returns

Index of network profile to which current ‘join parameter’ values belong

uint8 u8GetCurJoinProfile(void);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 109

Chapter 5
JIP Embedded API General Functions

u8GetCurRunProfile

Description

This function can be used to obtain the index of the network profile to which the
current ‘run parameter’ values belong (u8MaxChildren,
u8MaxSleepingChildren, u8MaxFailedPkts, u8MaxBcastTTL,
u16RouterPingPeriod). If they are from a standard profile, the function will return
the relevant profile index in the range 0-9, otherwise a custom index will be returned.

Parameters

None

Returns

Index of network profile to which current run parameter values belong

uint8 u8GetCurRunProfile(void);
110 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
bJnc_ChangeJoinProfile

Description

This function can be called by the application on the Co-ordinator to change the
JenNet network profile used by the WPAN (while the network is running). The new
profile specified in this function must be a standard profile (0-9).

The Co-ordinator must inform the other network nodes of the change in profile and
all nodes should switch to the new profile at the same time. Therefore, the profile
switch on the Co-ordinator does not occur immediately. Calling this function will first
cause the Co-ordinator to transmit a series of broadcasts to notify the other network
nodes of the profile change - the number of broadcasts in the series and the period
between consecutive broadcasts are specified in the function call through the
parameters u8NumBroadcasts and u8BroadcastPeriod respectively.

The profile switch should occur once the series of broadcasts is complete - that is,
after a time delay (from the moment that the function was called) which is equal to
u8NumBroadcasts x u8BroadcastPeriod. Timing information to ensure a
synchonised profile switch (across all nodes) is conveyed in the broadcasts.

On all nodes, the switch is handled by the JenNet-IP stack and is transparent to the
application on the node.

Parameters

u8ProfileIndex Index value of (standard) network profile to be used:

0-9: Use standard profile with specified index
Any other value: Unused

u8NumBroadcasts Number of broadcasts to inform other nodes of the new profile

u8BroadcastPeriod Time-period between consecutive broadcasts, in tenths of a
second

Returns

TRUE if function returned successfully, FALSE otherwise

bool_t bJnc_ChangeJoinProfile(uint8 u8ProfileIndex,
uint8 u8NumBroadcasts,
uint8 u8BroadcastPeriod);

Note: If a node that is currently using a custom profile
receives a notification to change to a standard profile, it will
ignore the notification and continue to use the custom profile.
However, the node will pass on the profile change information
in its beacon payload.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 111

Chapter 5
JIP Embedded API General Functions

5.4 Data Transfer Functions

This section describes functions that are concerned with receiving data.

The data transfer functions are listed below, along with their page references:

Function Page

eJIP_Poll 113

i6LP_RecvFrom 114
112 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eJIP_Poll

Description

This non-blocking (but synchronous) function is used on an End Device to generate
a manual poll request to its parent, in order to retrieve any pending data that may be
waiting for the device on its parent (the data may have arrived while the End Device
was sleeping).

The function returns immediately and indicates whether the request is being
successfully processed - if E_JIP_POLL_PENDING is returned, an
E_STACK_POLL stack event can be subsequently expected, with data field
containing a 1-byte value of type teJIP_PollResponse (see Section 8.2.5) with the
following meanings:

E_JIP_POLL_NO_DATA - Poll complete but no data pending

E_JIP_POLL_DATA_READY - Poll complete and data received

E_JIP_POLL_TIMEOUT - Poll timed out and no data received

E_JIP_POLL_ERROR - Problem with request

If data is received as a result of this function call, the data will be handled
automatically by the JenNet-IP stack.

A single call to this function may not obtain all pending data and multiple calls may
be required to retrieve all the data. If E_JIP_POLL_DATA_READY results from a
function call, there may be more data and the function should be called again. A
result of E_JIP_POLL_NO_DATA indicates that all pending data has been retrieved
and there is no need to call the function again.

In addition to manual polling, this function should also be used when auto-polling is
enabled on an End Device (see Appendix A.4). An auto-poll may not retrieve all the
pending data from the parent and this function should be called (once) following an
auto-poll to request any further data.

Parameters

None

Returns

One of:

E_JIP_POLL_ERROR (problem with request)

 E_JIP_POLL_PENDING (request accepted but not complete yet)

teJIP_PollResponse eJIP_Poll(void);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 113

Chapter 5
JIP Embedded API General Functions

i6LP_RecvFrom

Description

This non-blocking (but synchronous) function retrieves a received packet from the
specified local socket and stores it in the specified application buffer.

The function should be called after receiving the data event E_DATA_RECEIVED
which indicates that data is available on the socket. It is also used to receive the
ICMP event E_6LP_ICMP_MESSAGE by specifying the special ICMP socket
SIXLP_ERROR_SOCKET through the parameter iSocket. For more information on
handling ICMP messages, refer to Appendix B. ICMP messages are also described
in RFC 4443 available from the IETF (www.ietf.org).

Note that the incoming packet can be discarded by calling this function with the
parameter *pu8Data set to NULL.

Parameters

iSocket Socket identifier

*pu8Data Pointer to the application buffer to receive packet data. If set
to NULL, the packet is discarded

u16DataLen Available space in buffer, in bytes

u32Flags Flags (can be left as 0)

*psSrcAddr Pointer to structure to receive packet source address and port

*pu8AddrLen Pointer to location to receive length of address/port structure,
in bytes

Returns

Size of received payload, in bytes. -1 indicates that nothing has been received, the
receiver buffer is too small for the packet or some other error.

Note that if -1 is returned because the receive buffer is too small, the buffer will not
be freed by this function. In this case, the buffer should be freed by calling the
function again with *pu8Data set to NULL.

 int i6LP_RecvFrom(int iSocket,
uint8 *pu8Data,
uint16 u16DataLen,
uint32 u32Flags,
ts6LP_SockAddr *psSrcAddr,
uint8 *pu8AddrLen);

Note: The Berkeley version of this function is blocking.
114 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
5.5 IPv6 Address Functions

This section describes the functions which are used to obtain IPv6 addresses and
create host interface IDs. IPv6 addresses are introduced in Section 3.3.

The IPv6 address functions are listed below, along with their page references:

Function Page

iJIP_CreateInterfaceIdFrom64 116

iJIP_GetOwnDeviceAddress 117

iJIP_GetLastDestinationAddr 118

iJIP_GetLastSourceAddr 119

bJIP_AddGroupAddr 120

bJIP_RemoveGroupAddr 121
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 115

Chapter 5
JIP Embedded API General Functions

iJIP_CreateInterfaceIdFrom64

Description

This function creates a host interface ID (the lower 64 bits of an IPv6 address) from
a MAC address. The host interface ID is taken to be the MAC address with bit 57
inverted and is returned in a structure pointed to by *psDeviceInterfaceId.

The structure EUI64_s used in this function is described in Section 8.1.15.

Parameters

*psDeviceInterfaceId Pointer to structure to receive host interface ID

*psDeviceEUI64 Pointer to structure containing the MAC address

Returns

0 (success) or -1 (failure - for example, if the pointers passed in were not valid)

int iJIP_CreateInterfaceIdFrom64(
EUI64_s *psDeviceInterfaceId,
EUI64_s *psDeviceEUI64);
116 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
iJIP_GetOwnDeviceAddress

Description

This function obtains the 128-bit IPv6 address of the local device.

The obtained address comprises two parts:

 64-bit address prefix, which can be a global address prefix or a link-local address prefix
(the required prefix type must be specified through the Boolean parameter).

 64-bit host interface ID

The address prefix is specified at the time of network formation through the stack
initialisation data structure, tsStackInitData (described in Section 8.1.1), used
by eJIP_Init().

Parameters

*psDeviceAddress Pointer to structure to receive the IPv6 address of the local
device - see Section 8.1.16

bUseGlobal Required address prefix type:
TRUE: Use global prefix
FALSE: Use link-local prefix

Returns

0 (success) or –1 (error)

 int iJIP_GetOwnDeviceAddress(
in6_addr *psDeviceAddress,
bool_t bUseGlobal);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 117

Chapter 5
JIP Embedded API General Functions

iJIP_GetLastDestinationAddr

Description

This function obtains the destination IPv6 address of the last packet received by the
local node. The function should return the (unicast) address of the local node or a
multicast address.

Parameters

*psAddr Pointer to structure to receive the destination address information
(see Section 8.1.4)

Returns

0 (success) or –1 (error)

int iJIP_GetLastDestinationAddr(ts6LP_SockAddr *psAddr);
118 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
iJIP_GetLastSourceAddr

Description

This function obtains the source IPv6 address of the last packet received by the local
node.

Parameters

*psAddr Pointer to structure to receive the source address information (see
Section 8.1.4)

Returns

0 (success) or –1 (error)

int iJIP_GetLastSourceAddr(ts6LP_SockAddr *psAddr);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 119

Chapter 5
JIP Embedded API General Functions

bJIP_AddGroupAddr

Description

This function can be used to add the local node to the multicast group with the
specified IPv6 multicast address. The multicast address is stored locally so that the
node can recognise IP packets with this destination address as being for itself (the
IPv6 address of the multicast group is added to the MIB for the ‘Groups module’ on
the node - see Appendix F.3.3).

The function will cause the application callback function bJIP_GroupCallback() to
be invoked, which must provide authorisation before the change is implemented.

The node can subsequently be removed from the multicast group using the function
bJIP_RemoveGroupAddr().

Note that a node can simultaneously be a member of more than one multicast group.
The maximum number of groups to which a node can belong is determined by the
stack parameter u8SocketMaxGroupAddrs (see Section 9.3) - the default
maximum is 8 groups but this maximum can be set to any value in the range 0-255.

Parameters

*psAddr Pointer to IPv6 address of multicast group to which the local
node is to be added

Returns

TRUE if node successfully added to multicast group, FALSE otherwise

bool_t bJIP_AddGroupAddr(in6_addr *psAddr);

Note: Although multicast messages may be received by an
End Device (that is awake), these messages are discarded by
the device. Therefore, an End Device should not be added to
a multicast group.
120 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
bJIP_RemoveGroupAddr

Description

This function can be used to remove the local node from the multicast group with the
specified IPv6 multicast address (the IPv6 address of the multicast group is removed
from the MIB for the ‘Groups module’ on the node - see Appendix F.3.3).

The function will cause the application callback function bJIP_GroupCallback() to
be invoked, which must provide authorisation before the change is implemented.

The function can only be used to remove the node from a multicast group to which it
has previously been added using the function bJIP_AddGroupAddr().

Parameters

*psAddr Pointer to IPv6 address of multicast group to which the local
node is to be removed

Returns

TRUE if node successfully removed from multicast group, FALSE otherwise

bool_t bJIP_RemoveGroupAddr(in6_addr *psAddr);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 121

Chapter 5
JIP Embedded API General Functions

5.6 IP Functions

This section details the functions that allow certain aspects of IP packet delivery to be
configured.

The IP functions are listed below, along with their page references:

Function Page

vJIP_SetDefaultMaxHopCount 123

vJIP_SetPacketDefragTimeout 124
122 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_SetDefaultMaxHopCount

Description

This function sets a value for the maximum number of hops in the IPv6 headers of
outgoing packets. The default value is 255.

Each time the packet is forwarded towards its destination by an intermediate IP host,
the hop count in the IPv6 header is decremented by one. If the hop count falls below
zero, the packet is discarded.

Note that the hop count is not decremented within the wireless network (which is
considered to be a single hop at the IP level). Thus, the first time the count is
decremented is at the Border-Router, on entering the LAN/WAN domain.

Parameters

u8userDefaultHopCount Maximum hop count to set (in the range 1-255)

Returns

None

void vJIP_SetDefaultMaxHopCount(
uint8 u8userDefaultHopCount);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 123

Chapter 5
JIP Embedded API General Functions

vJIP_SetPacketDefragTimeout

Description

This function sets the timeout period after which incomplete packets will be discarded
in order to free up buffer space. Packets arriving fragmented will be held by the stack
until all the parts are available for defragmenting or until the timeout period expires.

By default, the timeout period is set to 60 seconds, in accordance with the 6LoWPAN
specification. However, you are advised to set it to 1 second in order to avoid
exhausting the buffer pool.

Parameters

u8userTimeoutInSeconds Timeout period (in seconds) for which the stack
waits before discarding packet fragments
(default timeout period is 60 seconds)

Returns

None

void vJIP_SetPacketDefragTimeout(
uint8 u8userTimeoutInSeconds);
124 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6. JIP Embedded API MIB Functions

This chapter details the functions and macros of the JIP Embedded API that are used
to manage MIBs and their variables, including the use of JIP traps to monitor MIB
variables. The functions are defined in the header file jip.h and the macros are defined
in jip_define_mib.h.

The function/macro descriptions are divided into the following sub-sections.

 Section 6.1 details the macros for defining MIB types and declaring MIBs

 Section 6.2 details the MIB initialisation function

 Section 6.3 details the functions for locally accessing MIB variables

 Section 6.4 details the functions for remotely accessing MIB variables

6.1 MIB Macros

The MIB macros are used to define a MIB type (and its variables) and then create one
or more MIBs based on the MIB type (currently, only one instance of each MIB type
per node is supported). The macros are divided two sets:

 MIB type definition macros, described in Section 6.1.1

 MIB declaration macros, described in Section 6.1.2

Defining MIB types and creating MIBs are described in Section 4.2.1.

6.1.1 MIB Type Definition Macros

This set of macros is used to define a MIB type and its variables. The macros
automatically fill in the relevant structures.

The macros are listed below, along with their page references:

Macro Page

START_DEFINE_MIB 126

DEFINE_VAR 127

END_DEFINE_MIB 128
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 125

Chapter 6
JIP Embedded API MIB Functions

START_DEFINE_MIB

Description

This macro can be used to begin the process of defining a MIB type. A unique
identifier and name (character string) must be specified for the MIB type. The macro
automatically creates a tsJIP_MibDef structure for the MIB type.

Use of this macro must be followed by the macros DEFINE_VAR() and
END_DEFINE_MIB().

Parameters

ID Unique 32-bit identifier of MIB type

NAME Character string representing unique name for MIB type

START_DEFINE_MIB(ID, NAME)
126 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
DEFINE_VAR

Description

This macro can be used to define a variable for a MIB type. A unique identifier and
name must be specified for the variable, as well as a number of other properties. The
macro automatically creates a tsJIP_VarDef structure for the variable and also fills
in the relevant fields of the tsJIP_MibDef structure for the MIB type.

The macro creates only one variable at a time and so must be used repeatedly to
create multiple variables. Use of this macro must follow START_DEFINE_MIB() and
precede END_DEFINE_MIB().

Parameters

ID Unique 8-bit identifier for the variable within the MIB

TYPE Data type of variable - one of the types listed in Section 8.2.2

NAME Character string representing unique name for variable, used
to identify the variable within the code

DISPLAY_NAME Character string representing a human-readable name to be
used in query responses relating to the variable (NULL setting
indicates that string specified in NAME is to be used)

FLAGS Reserved for future use

ACCESS Type of access allowed to the variable - one of the access
types listed in Section 8.2.3

CACHE Value indicating the valid lifetime of the variable when cached
(see below)

SECURITY Security applied to the variable (currently must always be set
to E_JIP_SECURITY_NONE)

Cache Macros

Any one of the following macros can be used in the CACHE parameter to indicate
the valid lifetime of the variable (indicating the maximum time for which the variable
can be cached and therefore the minimum refresh rate):

DEFINE_VAR(ID, TYPE, NAME, DISPLAY_NAME,
 FLAGS, ACCESS, CACHE, SECURITY)

Cache Macro Comments

E_JIP_CACHE_NONE Variable should not be cached - for future use

E_JIP_CACHE_SECONDS(TIME) Specifies cache time-limit in seconds (through TIME) - for future use

E_JIP_CACHE_MINUTES(TIME) Specifies cache time-limit in minutes (through TIME) - for future use

E_JIP_CACHE_HOURS(TIME) Specifies cache time-limit in hours (through TIME) - for future use

E_JIP_CACHE_DAYS(TIME) Specifies cache time-limit in days (through TIME) - for future use

E_JIP_CACHE_CONST The variable is a constant, so there is no cache time-limit
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 127

Chapter 6
JIP Embedded API MIB Functions

END_DEFINE_MIB

Description

This macro can be used to finish the process of defining a MIB type. The macro
automatically fills in the relevant fields of the tsJIP_MibDef structure for the MIB
type.

Use of this macro must follow the macros START_DEFINE_MIB() and
DEFINE_VAR().

Parameters

NAME Character string representing name of the MIB type

END_DEFINE_MIB(NAME)
128 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6.1.2 MIB Declaration Macros

This set of macros is used to create a MIB based on a (pre-defined) MIB type. The
macros automatically fill in the relevant structure.

The macros are listed below, along with their page references:

Macro Page

JIP_START_DECLARE_MIB 130

JIP_CALLBACK 131

JIP_END_DECLARE_MIB 132
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 129

Chapter 6
JIP Embedded API MIB Functions

JIP_START_DECLARE_MIB

Description

This macro can be used to create a MIB based on a (pre-defined) MIB type. A unique
name (character string) must be specified for the MIB. The macro automatically
creates a tsJIP_MibInst structure for the MIB.

Use of this macro must be followed by the macros JIP_CALLBACK() and
JIP_END_DECLARE_MIB().

Parameters

DEF_NAME Name of pre-defined MIB type

INST_NAME Character string representing unique name for MIB

JIP_START_DECLARE_MIB(DEF_NAME,
 INST_NAME)
130 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
JIP_CALLBACK

Description

This macro can be used to declare a variable of a MIB and specify the user-defined
callback functions that will be used to perform read and write accesses to the
variable.

The macro applies to only one variable at a time and so must be used repeatedly for
multiple variables. Use of this macro must follow JIP_START_DECLARE_MIB() and
precede JIP_END_DECLARE_MIB().

Parameters

NAME Character string representing name of variable

SET Name of callback function to be used to set (write) value of
variable

GET Name of callback function to be used to get (read) value of
variable

DATA Pointer to custom data to be passed to callback functions

JIP_CALLBACK(NAME, SET, GET, DATA)
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 131

Chapter 6
JIP Embedded API MIB Functions

JIP_END_DECLARE_MIB

Description

This macro can be used to finish the process of creating a MIB. The macro
automatically fills in the relevant fields of the tsJIP_MibInst structure for the MIB.
A handle must be specified which will be used to refer to the MIB in function calls.

Use of this macro must follow the macros JIP_START_DECLARE_MIB() and
JIP_CALLBACK().

Parameters

INST_NAME Character string representing name of the MIB

INST_HANDLE Character string representing handle for the MIB

JIP_END_DECLARE_MIB(INST_NAME,
 INST_HANDLE)
132 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6.2 MIB Initialisation Function

A MIB initialisation function is provided to register a MIB with JenNet-IP.

The function is listed below, along with its page reference:

Function Page

eJIP_RegisterMib 134
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 133

Chapter 6
JIP Embedded API MIB Functions

eJIP_RegisterMib

Description

This function is used to register a MIB with JenNet-IP, where the MIB has already
been created by the application (using the macros described in Section 6.1). The MIB
is specified by passing its handle into the function (this is the handle that was
specified for the MIB in the JIP_END_DECLARE_MIB() macro).

Parameters

hMib Handle of MIB to be registered

Returns

E_JIP_OK

teJIP_Status eJIP_RegisterMib(thJIP_Mib hMib);
134 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6.3 Local Variable Access Functions

The local variable access functions are concerned with accesses to MIB variables on
the local node. Most are concerned with the generation of notification messages that
result from changes in MIB variables and that are used by JIP traps.

The functions are listed below, along with their page references:

Function Page

vJIP_NotifyChanged 136

vJIP_SetEnabled 137

eJIP_PacketAddData 138

eJIP_AddTrap 146

eJIP_RemoveTrap 147
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 135

Chapter 6
JIP Embedded API MIB Functions

vJIP_NotifyChanged

Description

This function generates a trap notification of a change in the specified MIB variable.
The application may call this function when the value of the variable changes and a
notification of this change must be communicated to other nodes that are trapping
the variable.

Calling this function results in sending a trap notification message to any remote
nodes that are trapping the specified variable. On receiving this notification, a remote
node will invoke the callback function vJIP_Remote_TrapNotify(). For more
information on variable trapping, refer to Section 4.2.5.

Parameters

hMib Handle of MIB which contains the variable that has changed

u8VarID Identifier of the variable that has changed

Returns

None

void vJIP_NotifyChanged(thJIP_Mib hMib,
uint8 u8VarID);
136 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_SetEnabled

Description

This function can be used to change the enabled state of a MIB variable and to
generate a trap notification to indicate this change. The enabled state of a MIB
variable determines whether access to the variable is allowed.

Calling this function results in sending a trap notification message to any remote
nodes that are trapping the specified variable. On receiving this notification, a remote
node will invoke the callback function vJIP_Remote_TrapNotify(). For more
information on variable trapping, refer to Section 4.2.5.

Parameters

hMib Handle of MIB which contains the variable that has changed

u8VarID Identifier of the variable that has changed

bEnabled The enabled state of the variable, one of:
TRUE - the variable can be accessed
FALSE - the variable cannot be accessed

Returns

None

void vJIP_SetEnabled(thJIP_Mib hMib,
uint8 u8VarID,
bool_t bEnabled);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 137

Chapter 6
JIP Embedded API MIB Functions

eJIP_PacketAddData

Description

This function can be used to add a read MIB variable value to the response of a Get
request (issued on a remote node using eJIP_Remote_TableGet()). The function
must insert the obtained data and the relevant MIB entry index (if relevant) into the
response. It should be used in the user-defined callback function that handles the Get
request and generates the response.

While this function should normally be called once in the callback function, it must be
called multiple times for variables that are tables, in order to add multiple entries to
the response.

Parameters

hHandle Handle of response packet

*pvData Pointer to data to be added to response packet

u32Len Length of data to be added, in bytes

u32Entry Index of MIB entry from which data obtained (only relevant to
table type variables)

Returns

E_JIP_OK

teJIP_Status eJIP_PacketAddData(
thJIP_Packet hHandle,
void *pvData,
uint32 u32Len,
uint32 u32Entry);
138 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eJIP_AddTrap

Description

This function can be used to set a trap on the specified local MIB variable. The trap
notifications will be sent to the multicast group corresponding to the specified IPv6
multicast address.

This trap can be removed using the function eJIP_RemoveTrap().

Parameters

phMib Handle of MIB which contains the variable to be trapped

u8VarID Identifier of the variable to be trapped

psAddr Pointer to a structure containing the IPv6 multicast address to which
trap notifications will be sent (see Section 8.1.4)

u8Handle A user-defined handle for the local trap request

Returns

E_JIP_OK

E_JIP_ERROR_FAILED

teJIP_Status eJIP_AddTrap(thJIP_Mib phMib,
uint8 u8VarID,
ts6LP_SockAddr *psAddr,
uint8 u8Handle);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 139

Chapter 6
JIP Embedded API MIB Functions

eJIP_RemoveTrap

Description

This function can be used to remove a trap on the specified local MIB variable, for
which trap notifications are sent to the specified IPv6 multicast address.

Parameters

phMib Handle of MIB which contains the variable to be untrapped

u8VarID Identifier of the variable to be untrapped

psAddr Pointer to a structure containing the IPv6 multicast address to which
trap notifications are sent (see Section 8.1.4)

Returns

E_JIP_OK

E_JIP_ERROR_FAILED

teJIP_Status eJIP_RemoveTrap(thJIP_Mib phMib,
uint8 u8VarID,
ts6LP_SockAddr *psAddr);
140 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
6.4 Remote Variable Access Functions

The remote variable access functions are used to send requests to remote nodes to
set, get, trap and query MIB variables, as well as query the available MIBs.

The requests sent using these functions are handled on the remote node by the user-
defined callback functions described in Section 7.2.

The functions are listed below, along with their page references:

Function Page

eJIP_Remote_ID_Set 142

eJIP_Remote_TableGet 144

eJIP_Remote_Trap 146

eJIP_Remote_Untrap 147

eJIP_Remote_QueryMib 148

eJIP_Remote_QueryVar 149
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 141

Chapter 6
JIP Embedded API MIB Functions

eJIP_Remote_ID_Set

Description

This function sends a request to set or change the value of a MIB variable on a
remote node. A call to this function results in events which generate calls to the
following callback functions:

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_SetResponse(): Callback function which returns an enumeration value
that can be used to check the result of the attempt to set the value of the remote
variable.

The relevant MIB can be specified using either an 8-bit MIB index or 32-bit MIB
identifier, as selected through the bUseMibIndex parameter (the MIB ID is associated
with a MIB type but can be used to specify a MIB here since only one MIB of each
type is permitted in the current JenNet-IP release).

As alternatives to this function, macros are provided that automatically set the
bUseMibIndex parameter:

 eJIP_Remote_Set() sets bUseMibIndex to TRUE, so that the MIB index is used

 eJIP_Remote_MIB_Set() sets bUseMibIndex to FALSE, so that the MIB ID is used

All other parameters for these macros are the same as for eJIP_Remote_ID_Set() -
for the prototypes, refer to the header file JIP.h.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes will run JIP on the
same port, therefore the remote port will be the same as the
local port used for JIP.

u8Handle A user-defined handle for the set request. This handle is then
used by vJIP_Remote_SetResponse(), allowing the request
and its response to be matched. Note that bit 7 is reserved for
a ‘stay awake’ flag (see Section 4.6.3)

u32MibID Identifier or index (see bUseMibIndex below) of the MIB
containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eVarType The type of variable being set (must match the type on the
remote node).

teJIP_Status eJIP_Remote_ID_Set(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint32 u32MibID,
uint8 u8VarIndex,
teJIP_VarType eVarType,
void *pvVal,
uint32 u32ValSize
bool_t bUseMibIndex);
142 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
*pvVal Pointer to the object holding the value to send.

u32ValSize Size, in bytes, of the object pointed to by *pvVal. If this is the
wrong size for the type of variable then the behaviour is
undefined.

bUseMibIndex Indicates whether MIB index or ID to be used to identify MIB
in u32MibID parameter (above), one of:
TRUE - Use 8-bit MIB index
FALSE - Use 32-bit MIB ID

Returns

E_JIP_OK (Success)

E_JIP_ERROR_FAILED (Unable to send the request through the UDP layer).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 143

Chapter 6
JIP Embedded API MIB Functions

eJIP_Remote_TableGet

Description

This function sends a request to retrieve the value of a MIB variable on a remote
node. If the MIB variable is of the table datatype, the first table entry and the number
of table entries to be returned must be specified. A call to this function results in
events which generate calls to the following callback functions:

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_TableGetResponse(): Callback function which is invoked for
each table entry in the response (and is invoked at least once, even if no
entries are returned).

 vJIP_Remote_GetResponse(): Callback function which returns an enumeration value
that can be used to check the status of the attempt to get the value of a remote
variable.

The relevant MIB can be specified using either an 8-bit MIB index or 32-bit MIB
identifier, as selected through the bUseMibIndex parameter (the MIB ID is associated
with a MIB type but can be used to specify a MIB here since only one MIB of each
type is permitted in the current JenNet-IP release).

As alternatives to this function, macros are provided that automatically set the
bUseMibIndex, u16FirstEntry and u8EntryCount parameters:

 eJIP_Remote_Get() sets bUseMibIndex to TRUE, so that the MIB index is used,
u16FirstEntry to 0 and u8EntryCount to 255

 eJIP_Remote_MIB_Get() sets bUseMibIndex to FALSE, so that the MIB ID is used,
u16FirstEntry to 0 and u8EntryCount to 255

All other parameters for these macros are the same as for eJIP_Remote_TableGet()
- for the prototypes, refer to the header file JIP.h.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes will run JIP on the
same port, therefore the remote port will be the same as the
local port used for JIP.

u8Handle A user-defined handle to the get request. This handle is then
used by vJIP_Remote_TableGetResponse() and
vJIP_Remote_GetResponse(). The stack does not use this
value - it is provided so the application can match the request

teJIP_Status eJIP_Remote_TableGet(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint32 u32MibID,
uint8 u8VarIndex,
uint16 u16FirstEntry,
uint8 u8EntryCount,
bool_t bUseMibIndex);
144 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
with the response. Note that bit 7 is reserved for a ‘stay awake’
flag (see Section 4.6.3)

u32MibID Identifier or index (see bUseMibIndex below) of the MIB
containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

u16FirstEntry Index of first table entry requested (ignored if variable is not a
table datatype) - required when accessing a table with more
entries than can be received in a single request.

u8EntryCount Number of table entries to return (ignored if variable is not a
table datatype - treated as a maximum, the remote node may
return fewer entries.

bUseMibIndex Indicates whether MIB index or ID to be used to identify MIB
in u32MibID parameter (above), one of:
TRUE - Use 8-bit MIB index
FALSE - Use 32-bit MIB ID

Returns

E_JIP_OK (Success)

E_JIP_ERROR_FAILED (Unable to send the request through the UDP layer).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 145

Chapter 6
JIP Embedded API MIB Functions

eJIP_Remote_Trap

Description

This function sets up a remote trap on a MIB variable on a remote node so that
changes to the variable can be monitored. A call to this function results in events
which generate calls to the following callback functions

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_TrapResponse(): Callback function which returns an enumeration
value that can be used to check the result of the attempt to set a remote variable trap.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes will run JIP on the
same port, therefore the remote port will be the same as the
local port used for JIP.

u8Handle A user-defined handle for the remote trap request. This
handle is then used by vJIP_Remote_TrapResponse(),
allowing the request and its response to be matched. Note
that bit 7 is reserved for a ‘stay awake’ flag (see Section 4.6.3)

u8NotificationHandle A user-defined handle for the trap notification request. This
handle is then used by vJIP_Remote_TrapNotify().

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

Returns

E_JIP_OK (Success)

E_JIP_ERROR_FAILED (Unable to send the request through the UDP layer).

teJIP_Status eJIP_Remote_Trap(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8NotificationHandle,
uint8 u8MibIndex,
uint8 u8VarIndex);
146 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eJIP_Remote_Untrap

Description

This function sends a request to unregister an interest in a trapped MIB variable on
a remote node. A call to this function results in events which generate calls to the
following callback functions:

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_TrapResponse(): Callback function which returns an enumeration
value that can be used to check the result of the attempt to untrap a remote variable.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes run JIP on the same
port, therefore the remote port will be the same as the local
port used for JIP.

u8Handle A user-defined handle for the remote untrap request. This
handle is then used by vJIP_Remote_TrapResponse(). Note
that bit 7 is reserved for a ‘stay awake’ flag (see Section 4.6.3)

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

Returns

E_JIP_OK (Success)

E_JIP_ERROR_FAILED (Unable to send the request through the UDP layer)

teJIP_Status eJIP_Remote_Untrap(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 147

Chapter 6
JIP Embedded API MIB Functions

eJIP_Remote_QueryMib

Description

This function sends a request for a list of the MIBs that are present on a remote node.
A call to this function results in events which generate calls to the following callback
functions:

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_QueryMibResponse(): Callback function which returns a query status
enumeration for the MIB query request, the total number of MIBs on the node, and the
number remaining to be reported.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes will run JIP on the
same port, therefore the remote port will be the same as the
local port used for JIP.

u8Handle A user-defined handle for the query request. This handle is
then used by vJIP_Remote_QueryMibResponse(). Note
that bit 7 is reserved for a ‘stay awake’ flag (see Section 4.6.3)

u8MibStartIndex Index of the first MIB to return on the remote node.

u8NumMibs The maximum number of MIBs to return in the list. Because of
the maximum size of a UDP packet, the number of MIBs
returned may be less than this.

Returns

E_JIP_OK (Success)

E_JIP_ERROR_FAILED (Unable to send the request through the UDP layer)

teJIP_Status eJIP_Remote_QueryMib(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibStartIndex,
uint8 u8NumMibs);
148 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eJIP_Remote_QueryVar

Description

This function sends a request to query the variables in a particular MIB on a remote
node - that is, to obtain a list of the variables in the MIB. The function allows you to
specify the number of variables and the index of the first variable to include in the
returned list (useful when the function must be called several times to report all
variables of the MIB). This function call results in calls to the following callback
functions:

 vJIP_Remote_DataSent(): Callback function which returns an enumeration value that
can be used to check the result of the attempt to send a request to a remote node.

 vJIP_Remote_QueryVarResponse(): Callback function which returns a query status
enumeration value and a pointer to an array containing the variable details.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node. In practice, all nodes will run JIP on the
same port, therefore the remote port will be the same as the
local port used for JIP.

u8Handle A user-defined handle for the remote query variable request.
This handle is then used by
vJIP_Remote_QueryVarResponse(). Note that bit 7 is
reserved for a ‘stay awake’ flag (see Section 4.6.3)

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarStartIndex Index of the first variable within the remote MIB to return.

u8NumVars The maximum number of variables to return in the list.
Because of the maximum size of a UDP packet, the number
of variables returned may be less than this.

Returns

E_JIP_OK (Success)
E_JIP_ERROR_FAILED (Unable to send the request through the UDP stack)

teJIP_Status eJIP_Remote_QueryVar(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarStartIndex,
uint8 u8NumVars);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 149

Chapter 6
JIP Embedded API MIB Functions

150 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
7. JIP Embedded API Callback Functions

This chapter describes functions that must be defined by the user as callback (stack
to application) functions to deal with data, stack and peripheral events occurring in the
stack.

The callback functions are mostly called in application context, resulting from
application calls into the stack - only vJIP_PeripheralEvent() is called in interrupt
context.

The JIP Embedded API callback functions are divided into two categories:

 General callback functions, detailed in Section 7.1

 MIB and trap callback functions, detailed in Section 7.2

7.1 General Callback Functions

The general callback functions deal with network configuration, multicast groups and
event handling.

The functions are listed below, along with their page references:

Function Page

vJIP_ConfigureNetwork 152

bJIP_GroupCallback 153

vJIP_PeripheralEvent 154

vJIP_StackEvent 155

v6LP_DataEvent 157

vJIP_StayAwakeRequest 158

Note: If a call is made into the stack from within one of
the callback functions then the callback function may be
re-entered.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 151

Chapter 7
JIP Embedded API Callback Functions

vJIP_ConfigureNetwork

Description

This function sets the JenNet parameters. The required values of these parameters
are passed into the function by means of a structure of type tsNetworkConfigData.
For details of this structure and descriptions of the parameters, refer to Chapter 9.

This callback function is invoked during stack initialisation which results from a call
to eJIP_Init(). The latter function sets the default values for all the JenNet
parameters before vJIP_ConfigureNetwork() is invoked, but this callback function
will over-write the previously set values.

Parameters

*psNetworkConfigData Pointer to structure containing values to be set

Returns

None

void vJIP_ConfigureNetwork(
tsNetworkConfigData *psNetworkConfigData);
152 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
bJIP_GroupCallback

Description

This function is called when a request has been initiated to add the local node to or
remove it from a multicast group through a call to bJIP_AddGroupAddr() or
bJIP_RemoveGroupAddr(). The purpose of the function is to authorise the request
- if the function returns TRUE then JenNet-IP will perform the necessary
modifications to satisfy the request.

Parameters

eEvent Type of request, one of:

E_JIP_GROUP_JOIN (request to join group)
E_JIP_GROUP_LEAVE (request to leave group)

*psAddr Pointer to IPv6 multicast address of relevant group

Returns

TRUE if the request is authorised, FALSE if the request is refused

bool_t bJIP_GroupCallback(teJIP_GroupEvent eEvent,
in6_addr *psAddr);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 153

Chapter 7
JIP Embedded API Callback Functions

vJIP_PeripheralEvent

Description

This function handles an interrupt generated by an on-chip peripheral.

Refer to the JN516x Integrated Peripherals API User Guide (JN-UG-3087) or JN514x
Integrated Peripherals API User Guide (JN-UG-3066) for further information on
peripheral interrupts, including the possible values of the function parameters.

Parameters

u32Device Peripheral device that generated interrupt

u32ItemBitmap Individual interrupt source within peripheral

Returns

None

 void vJIP_PeripheralEvent(uint32 u32Device,
uint32 u32ItemBitmap);

Note: This function is called in interrupt context (unlike the
other callback functions, which are called in application
context).
154 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_StackEvent

Description

This function handles a stack management event from the IEEE 802.15.4 or JenNet
layer of the stack. For some stack events (see below), data accompanies the event
and is made available through the function parameters.

Parameters

eEvent Type of stack management event received, one of:
E_STACK_STARTED
E_STACK_JOINED
E_STACK_NODE_JOINED
E_STACK_NODE_LEFT
E_STACK_TABLES_RESET
E_STACK_RESET
E_STACK_POLL
E_STACK_NODE_JOINED_NWK
E_STACK_NODE_LEFT_NWK
E_STACK_NODE_AUTHORISE
E_STACK_ROUTE_CHANGE
E_STACK_GROUP_CHANGE

*pu8Data Pointer to additional data for some events (for details, see
table below)

u8DataLen Length of additional data (if relevant), in bytes

The table below details the stack events for which additional data is returned through
pu8Data:

 void vJIP_StackEvent(teJIP_StackEvent eEvent,
uint8 *pu8Data,
uint8 u8DataLen);

Stack Event pu8Data u8DataLen (bytes)

E_STACK_STARTED Points to tsNwkInfo structure (detailed
in Section 8.1.2)

Size of tsNwkInfo

E_STACK_JOINED Points to tsNwkInfo structure (detailed
in Section 8.1.2)

Size of tsNwkInfo

E_STACK_POLL Points to the poll-response byte which is
of the enumerated type
teJIP_PollResponse (detailed in Sec-
tion 8.2.2).

1

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 155

Chapter 7
JIP Embedded API Callback Functions

Returns

None

E_STACK_NODE_JOINED Points to tsAssocNodeInfo structure.
The sMacAddr and u32DeviceClass
elements of the structure contain useful
data (e.g. address of node that has joined
or left) but u16NetworkAddr is always
0xFFFE

Size of
tsAssocNodeInfo

E_STACK_NODE_LEFT

E_STACK_NODE_JOINED_NWK

E_STACK_NODE_LEFT_NWK

E_STACK_ROUTE_CHANGE

E_STACK_RESET Points to tsStackReset structure
(detailed in Section 8.1.17), containing
information relating to the stack reset

Size of tsStackReset

E_STACK_NODE_AUTHORISE Points to MAC_ExtAddr_s structure,
containing the address of the node which
is attempting to gain authorisation

Size of MAC_ExtAddr_s

E_STACK_GROUP_CHANGE Points to tsJIP_StackGroupChange
structure, containing a list of multicast
groups which node has been added to or
removed from (allows application to keep
track of changes initiated remotely)

Size of
tsJIP_StackGroupChange

Stack Event pu8Data u8DataLen (bytes)
156 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
v6LP_DataEvent

Description

This function handles a data management event by servicing the buffer associated
with the local socket on which the event occurred.

After receiving an E_DATA_RECEIVED, E_IP_DATA_RECEIVED or
E_6LP_ICMP_MESSAGE data event on a socket, the application must ensure that
the associated buffer is dealt with and released by calling i6LP_RecvFrom() on the
socket. If the packet is not needed, the buffer can simply be released by calling
i6LP_RecvFrom(), setting the pu8Data parameter to NULL.

An E_6LP_ICMP_MESSAGE event contains an ICMP message that needs to be
handled by the application (normally, ICMP messages are handled by the stack). The
message can be one of a number of types (indicated in its header) and can be read
using the i6LP_RecvFrom() function. For more information on handling ICMP
messages, refer to Appendix B. ICMP messages are also described in RFC 4443
available from the IETF (www.ietf.org).

Parameters

iSocket Socket identity
(for E_IP_DATA_RECEIVED event, this can be ignored).

eEvent Type of data management event received, one of:
E_DATA_SENT
E_DATA_SEND_FAILED
E_DATA_RECEIVED
E_IP_DATA_RECEIVED
E_6LP_ICMP_MESSAGE

*psAddr Pointer to structure containing the address/port (either source
or destination, depending on event)

u8AddrLen Length of address/port structure, in bytes

Returns

None

void v6LP_DataEvent(int iSocket,
teJIP_DataEvent eEvent,
ts6LP_SockAddr *psAddr,
uint8 u8AddrLen);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 157

Chapter 7
JIP Embedded API Callback Functions

vJIP_StayAwakeRequest

Description

This function is called on an End Device when a packet is received in which the ‘stay
awake’ flag is set (bit 7 of the handle). This bit is set by the source device of the
packet to request the target End Device to stay awake in order to receive further
packets.

The End Device is not obliged to stay awake, so this callback function may ignore the
request (for example, the End Device may not be able to accept such requests due
to limited power). Otherwise, to honour the request, the callback function should
implement a timer to postpone sleep.

For a full description of the ‘stay awake’ request, refer to Section 4.6.3.

Parameters

None

Returns

None

void vJIP_StayAwakeRequest(void);
158 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
7.2 MIB and Trap Callback Functions

The MIB and trap callback functions are used to react to requests relating to MIB and
trap management.

These callback functions are invoked following calls to the functions detailed in
Section 6.4 - that is, to deal with responses to requests to set, get, trap and query MIB
variables, as well as query the available MIBs. For example, the callback function
vJIP_Remote_GetResponse() is invoked as the result of a call to the function
eJIP_Remote_TableGet() that requests information on a variable.

The functions are listed below, along with their page references:

Function Page

vJIP_Remote_SetResponse 160

vJIP_Remote_GetResponse 161

vJIP_Remote_TableGetResponse 162

vJIP_Remote_TrapResponse 164

vJIP_Remote_TrapNotify 165

vJIP_Remote_QueryMibResponse 166

vJIP_Remote_QueryVarResponse 167

vJIP_Remote_DataSent 169
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 159

Chapter 7
JIP Embedded API Callback Functions

vJIP_Remote_SetResponse

Description

This callback function is invoked to handle the response to a remote variable Set
request issued by eJIP_Remote_ID_Set(). The response provides the result of the
Set request.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote Set response callback. This handle
matches the user-defined handle passed into the original
eJIP_Remote_ID_Set() call.

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eStatus The result of attempting to set the value, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX (MIB index is out of
range)

• E_JIP_ERROR_BAD_VAR_INDEX (Variable index is out
of range for the specified MIB)

• E_JIP_ERROR_NO_ACCESS (Variable is read-only or
constant)

• E_JIP_ERROR_BAD_BUFFER_SIZE (For string types,
string is too long; for blob types, data is wrong length)

• E_JIP_ERROR_WRONG_TYPE (Variable is of a different
type from the one in the request)

• E_JIP_ERROR_BAD_VALUE (Application on the remote
host rejected the value)

• E_JIP_ERROR_DISABLED (Remote variable has been
disabled so cannot be set)

• E_JIP_ERROR_FAILED (Unknown error)

Returns

None

void vJIP_Remote_SetResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex,
teJIP_Status eStatus);
160 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_Remote_GetResponse

Description

This callback function is invoked to handle the response to a remote variable Get
request issued by eJIP_Remote_TableGet(). The response provides the result of
the Get request, including the value of the variable.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote Get response callback. This handle
matches the user-defined handle passed into the original
eJIP_Remote_TableGet() call.

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eStatus The result of attempting to get the value, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX (MIB index is out of
range)

• E_JIP_ERROR_BAD_VAR_INDEX (Variable index is out
of range for that MIB)

• E_JIP_ERROR_DISABLED (Remote variable has been
disabled so cannot be retrieved)

• E_JIP_ERROR_FAILED (Unknown error)

*pvVal Pointer to the object holding the value returned

u32ValSize Size, in bytes, of the object pointed to by *pvVal.

Returns

None

void vJIP_Remote_GetResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex,
teJIP_Status eStatus,
teJIP_VarType eVarType,
const void *pvVal,
uint32 u32ValSize);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 161

Chapter 7
JIP Embedded API Callback Functions

vJIP_Remote_TableGetResponse

Description

This callback function is invoked for each table entry (of a table variable) in a
response to a remote variable Get request issued by eJIP_Remote_TableGet(). The
function reports the value of the table entry.

It is called at least once, even if there are no table entries in the response - for
example, the end of the table has been reached. In this case, the parameters
u16Entry, u8PacketRemaining and u32ValSize will be zero, and *pvVal will be NULL.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote Get response callback. This handle
matches the user-defined handle passed into the original
eJIP_Remote_TableGet() call

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eStatus The result of attempting to get the value, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX (MIB index is out of
range)

• E_JIP_ERROR_BAD_VAR_INDEX (Variable index is out
of range for that MIB)

• E_JIP_ERROR_DISABLED (Remote variable has been
disabled so cannot be retrieved)

• E_JIP_ERROR_FAILED (Unknown error)

eVarType Data type of the variable.

u16Entry Entry number for the entry being reported.

u16Remaining Number of entries in the table after this entry.

u8PacketRemaining Number of entries returned in this packet after this entry.

*pvVal Pointer to the object holding the entry value returned.

void vJIP_Remote_TableGetResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex,
teJIP_Status eStatus,
teJIP_VarType eVarType,
uint16 u16Entry,
uint16 u16Remaining,
uint8 u8PacketRemaining,
const void *pvVal,
uint32 u32ValSize);
162 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
u32ValSize Size, in bytes, of the object pointed to by *pvVal.

Returns

None
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 163

Chapter 7
JIP Embedded API Callback Functions

vJIP_Remote_TrapResponse

Description

This callback function is invoked to handle the response to a trap request issued by
eJIP_Remote_Trap() or an untrap request issued by eJIP_Remote_Untrap(). The
response provides the result of the trap request.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote trap response callback. This handle
matches the user-defined handle passed into the original
eJIP_Remote_Trap() or eJIP_Remote_Untrap() call.

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eStatus The result of attempting to trap the value, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX (MIB index is out of
range)

• E_JIP_ERROR_BAD_VAR_INDEX (Variable index is out
of range for the specified MIB)

• E_JIP_ERROR_DISABLED (Remote variable has been
disabled. A notification will however be issued with a status
of “Success” when the variable is enabled)

• E_JIP_ERROR_FAILED (Unknown error)

Returns

None

void vJIP_Remote_TrapResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex,
teJIP_Status eStatus);
164 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_Remote_TrapNotify

Description

This callback function issues a notification to the local application as the result of a
trap notification received from a remote node, indicating either of the following:

 the value of a trapped variable on the remote node has changed

 the enabled state of a trapped variable on the remote node has been changed

The response provides the results of the trap, including the type and value of the
variable. A trap for the variable will have been previously set up using
eJIP_Remote_Trap().

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the trap notification. This handle matches the user-
defined handle passed into the original eJIP_Remote_Trap()
call.

u8MibIndex Index of the MIB containing the variable on the remote node.

u8VarIndex Index of the variable within the MIB on the remote node.

eStatus The result of attempting to retrieve the value, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_DISABLED (Remote variable has been
disabled. A notification will be issued with a status of
“Success” when the variable is re-enabled)

• E_JIP_ERROR_FAILED (Unknown error)

eVarType Type of the variable returned.

*pvVal Pointer to the object holding the value returned.

u32ValSize Size, in bytes, of the object pointed to by *pvVal.

Returns

None

void vJIP_Remote_TrapNotify(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
uint8 u8VarIndex,
teJIP_Status eStatus,
teJIP_VarType eVarType,
void *pvVal,
uint32 u32ValSize);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 165

Chapter 7
JIP Embedded API Callback Functions

vJIP_Remote_QueryMibResponse

Description

This callback function is invoked to handle the response to a MIB Query request
issued by eJIP_Remote_QueryMib(), which is used to obtain a list of the MIBs on a
remote node. The callback function returns the details of one MIB reported in the
response.

The function returns a structure containing the identification information for a MIB
(see Section 8.1.9). However, the response may contain information on multiple
MIBs and so the stack may call this function multiple times (until the parameter
u8MibsRemaining becomes zero). In addition, the response may not report all the
MIBs on the remote node - there may be more MIBs to be reported (as indicated by
a non-zero value of the parameter 16MibsOutstanding). If this is the case, the
application must call eJIP_Remote_QueryMib() again to query the remaining MIBs
on the remote node.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote MIB query response callback. This
handle matches the user-defined handle passed into the
original eJIP_Remote_QueryMib() call.

eStatus The result of attempting to query, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX (u8MibStartIndex
parameter in eJIP_Remote_QueryMib() is out of range)

• E_JIP_ERROR_FAILED: (Unknown error)

u16MibsOutstanding The number of MIBs that remain to be queried after this
response. If this is non-zero then the application may need to
make further calls to eJIP_Remote_QueryMib().

u8MibsRemaining Number of MIBs that remain to be extracted from this
response.

*psMib Pointer to structure containing the extracted MIB information
(see Section 8.1.9).

Returns

None

void vJIP_Remote_QueryMibResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
teJIP_Status eStatus,
uint16 u16MibsOutstanding,
uint8 u8MibsRemaining,
tsJIP_QueryMibResponse *psMib);
166 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_Remote_QueryVarResponse

Description

This callback function is invoked to handle the response to a Remote Variable Query
request issued by eJIP_Remote_QueryVar(), which is used to obtain a list of the
variables in a MIB on a remote node. The callback function returns the details of one
MIB variable reported in the response.

The function returns a structure containing the information on a MIB variable (see
Section 8.1.10). However, the response may contain information on multiple
variables and so the stack may call this function multiple times (until the parameter
u8VarsRemaining becomes zero). In addition, the response may not report all the
variables of the relevant MIB - there may be more variables to be reported (as
indicated by a non-zero value of the parameter u16VarsOutstanding). If this is the
case, the application must call eJIP_Remote_QueryVar() again to query the
remaining variables of the MIB.

Parameters

*psAddr Pointer to a structure containing the address and port number
for the remote node.

u8Handle Handle for the remote query variable response callback. This
handle matches the user-defined handle passed into the
original eJIP_Remote_QueryVar() call.

u8MibIndex Index of the MIB containing the variables on the remote node.

eStatus The result of attempting to query variable, one of:

• E_JIP_OK (Success)

• E_JIP_ERROR_BAD_MIB_INDEX
(u8MibIndex parameter to eJIP_Remote_QueryVar() is
out of range)

• E_JIP_ERROR_BAD_VAR_INDEX (u8VarStartIndex
parameter to eJIP_Remote_QueryVar() is out of range)

• E_JIP_ERROR_FAILED (Unknown error)

u16VarsOutstanding The number of variables in the MIB that remain to be queried
after this response. If this is non-zero then the application may
need to make further calls to eJIP_Remote_QueryVar().

u16VarsReturned The number of variables in the MIB that remain to be extracted
from this response.

*psVar Pointer to structure describing the extracted MIB variable.

void vJIP_Remote_QueryVarResponse(
ts6LP_SockAddr *psAddr,
uint8 u8Handle,
uint8 u8MibIndex,
teJIP_Status eStatus,
uint16 u16VarsOutstanding,
uint8 u8VarsRemaining,
tsJIP_QueryVarResponse *psVar);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 167

Chapter 7
JIP Embedded API Callback Functions

Returns

None
168 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vJIP_Remote_DataSent

Description

This callback function is invoked following a function call to send a request to a MIB
on a remote node. The function reports the status (success or failure) of the attempt
to send the request.

Parameters

psAddr Pointer to a structure containing the address and port number
for the remote node.

eStatus Status of send, one of:

• E_JIP_OK (Success - request was sent)

• E_JIP_ERROR_FAILED (Failure - request could not be
sent)

Returns

None

void vJIP_Remote_DataSent(ts6LP_SockAddr *psAddr,
teJIP_Status eStatus);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 169

Chapter 7
JIP Embedded API Callback Functions

170 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8. JIP Embedded API Structures and Enums

This chapter details the structures and enumerations used by the functions of the JIP
Embedded API described in this manual.

8.1 Data Types

8.1.1 tsJIP_InitData

This structure contains stack initialisation data and is used in the function eJIP_Init().
Note that some of the elements of this structure can be subsequently changed by the
callback function vJIP_ConfigureNetwork().

typedef struct

{

 uint64 u64AddressPrefix;

 uint32 u32Channel;

 uint16 u16PanId;

 uint16 u16MaxIpPacketSize;

 uint16 u16NumPacketBuffers;

 uint8 u8UdpSockets;

 teJIP_Device eDeviceType;

 uint32 u32RoutingTableEntries;

 uint32 u32DeviceId;

 uint8 u8UniqueWatchers;

 uint8 u8MaxTraps;

 uint8 u8QueueLength;

 uint8 u8MaxNameLength;

 uint16 u16Port;

 const char *pcVersion;

} tsJIP_InitData;

The elements of the above structure are described in the table below.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 171

Chapter 8
JIP Embedded API Structures and Enums

tsStackInitData Element Description Range

u64AddressPrefix IPv6 address prefix - see Section 3.3.2
Specified on Co-ordinator only

-

u32Channel 2.4-GHz channel(s) to be used by the network or in a
channel scan. Can be set in one of two ways:

• Fixed integer value in the range 11-26, directly
representing the 2.4-GHz channel to use.

• Bitmap containing the set of channels to scan, where
any or all of bits 11 to 26 are set to indicate the
channels to scan, e.g. if bit 15 is set to ‘1’, channel 15
is included in the scan.

11-26

0x00000800 -
0x07FFF800

u16PanId Desired 16-bit PAN ID to use or search for - note that
the Co-ordinator may select an alternative value for the
network. The special value 0xFFFF indicates that the
Co-ordinator must generate a PAN ID which does not
clash with that of neighbouring networks or that an End
Device/Router can join any detected network.

0-0xFFFF
(0xFFFF indicates
Co-ordinator must
generate PAN ID)

u16MaxIpPacketSize Maximum IP-packet size, in bytes. Should be set to:
maximum payload size + 40.

0 and 256-1280
(0 gives default
value of 1280)

u16NumPacketBuffers Number of individual packet buffers in buffer area. This
value is set by the stack and the value can be read
back by the application after the call to eJIP_Init()
returns.

-

u8UdpSockets Maximum number of UDP sockets on node. At least
one socket is required for JIP.

-

eDeviceType Device type, one of:

• Co-ordinator

• Router

• End Device

E_JIP_COORDINATOR
E_JIP_ROUTER
E_JIP_END_DEVICE

u32RoutingTableEntries Number of entries in Routing table. Should be set
according to the maximum number of nodes in the net-
work, in order to limit memory space required for the
table.
Not applicable to End Devices

25-1000

u32DeviceId 32-bit Device ID - see Appendix C.1. -

u8UniqueWatchers Maximum number of remote nodes that can simultane-
ously trap MIB variables on the local node (this is the
maximum for the node, not per variable).

-

u8MaxTraps Maximum number of traps that can be simultaneously
registered for MIB variables on the local node (this is
the maximum for the node, not per variable).

-

172 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.1.2 tsNwkInfo

This structure contains details of the wireless network to which the local node belongs
and the node’s place in the network.

typedef struct

{

 MAC_ExtAddr_s sLocalAddr;

 MAC_ExtAddr_s sParentAddr;

 uint16 u16Depth;

 uint16 u16PanID;

 uint8 u8Channel;

 uint8 *pau8ExtData;

}tsNwkInfo;

where:

 sLocalAddr is a MAC_ExtAddr_s structure containing the local node's IEEE/
MAC address (see Section 8.1.3)

 sParentAddr is a MAC_ExtAddr_s structure containing the parent node's
IEEE/MAC address (see Section 8.1.3)

 u16Depth is the depth of the local node within the network tree (number of
hops from the Co-ordinator)

 u16PanID is the PAN ID of the network to which the local node belongs

 u8Channel is the number of the 2.4-GHz radio channel used

 pau8ExtData is a pointer to the user data passed in the Establish Route
message (may be NULL)

u8QueueLength Maximum number of items in the JIP queue which con-
tains JIP communications that will lead to packets in the
transmit buffers. Examples of these communications
are trap notifications and command responses. A single
item in this queue may yield more than one outgoing
packet. For example, a trap notification for a variable
only adds one item to the queue for all traps registered
for this variable, but may lead to multiple outgoing pack-
ets. Therefore, this parameter can have a smaller value
than u8UniqueWatchers and u8MaxTraps.

-

u8MaxNameLength Maximum length (in bytes) of the DescriptiveName var-
iable in the Node MIB.

-

u16Port Number of UDP port on which to receive JIP packets.
The default port number is 1873.

-

pcVersion Pointer to character string which provides the contents
of the Version variable in the Node MIB.

-

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 173

Chapter 8
JIP Embedded API Structures and Enums

8.1.3 MAC_ExtAddr_s

This structure stores the 64-bit IEEE/MAC address of a node as two 32-bit words.

typedef struct

{

 uint32 u32L;

 uint32 u32H;

} MAC_ExtAddr_s;

where:

 u32L contains the least-significant 32-bit word of the IEEE/MAC address

 u32H contains the most-significant 32-bit word of the IEEE/MAC address

8.1.4 ts6LP_SockAddr

This structure contains address and port information, and is typically used to specify
the address of a node and the number of the port on which JIP runs on the node.

typedef struct

{

 int sin6_family;

 in_port_t sin6_port;

 uint32 sin6_flowinfo;

 in6_addr sin6_addr;

 uint32 sin6_scope_id;

} ts6LP_SockAddr;

where:

 sin6_family is the ‘address family' - should always be set to
E_6LP_PF_INET6

 sin6_port is the IPv6 port number

 sin6_flowinfo contains flow information - this is not used by the stack and
the value set is unimportant

 sin6_addr is the IPv6 address

 sin6_scope_id contains scope information - this is not used by the stack and
the value set is unimportant
174 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.1.5 tsJIP_StackGroupChange

This structure is passed with the E_STACK_GROUP_CHANGE event, when the set
of multicast addresses registered on a node has been modified (added to or removed
from).

typedef struct

{

 MAC_ExtAddr_s sDeviceAddress;

 in6_addr *psAddressList;

 uint8 u8AddressListLen;

 bool_t bAddNotRemove;

} tsJIP_StackGroupChange;

where:

 sDeviceAddress is a MAC_ExtAddr_s structure (see Section 8.1.3)
containing the IEEE/MAC address of device on which the change has occured
(it is set to zero if the change occured on the local device)

 psAddressList is the list of multicast addresses in the network

 u8AddressListLen is the number of entries in the list of multicast addresses

 bAddNotRemove is a boolean indicating whether an address has been added
or removed:

 TRUE - address(es) added

 FALSE - address(es) removed

8.1.6 tsJIP_MibDef

This structure defines a MIB.

typedef const struct {

 uint32 u32MibID;

 uint8 u8Variables;

 tsJIP_VarDef asVariables[];

} PACK tsJIP_MibDef;

where:

 u32MibID is the 32-bit identifier for the MIB type

 u8Variables is the number of variables in the MIB

 asVariables[] is the array of the variables in the MIB
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 175

Chapter 8
JIP Embedded API Structures and Enums

8.1.7 tsJIP_VarDef

This structure defines a MIB variable.

typedef const struct {

 const char *pcName;

 uint8 u8VarID;

 uint8 u8Flags;

 teJIP_VarType eVarType;

 teJIP_Access eAccess;

 uint8 u8CacheHint;

 teJIP_Security eSecurity;

} PACK tsJIP_VarDef;

where:

 pcName is a pointer to a character string containing the name of the variable

 u8VarID is an 8-bit identifier for the variable within the MIB

 u8Flags is a flags bitmap (reserved for future use)

 eVarType is the data type of the variable (see Section 8.2.2)

 eAccess is a bitmap which indicates the permitted types of access to the
variable (see Section 8.2.3)

 u8CacheHint indicates the duration for which the variable value should be
cached - this is set using one of the CACHE macros described on page 127

 eSecurity indicates the type of security applied to the variable (see Section
8.2.6)

8.1.8 tsJIP_MibInst

This structure defines a MIB (an instance of a MIB type).

typedef struct {

 thJIP_Mib psNext;

 char *pcName;

 tsJIP_MibDef *psDef;

 uint8 u8Index;

 tsJIP_VarDynamic asFuncs[];

} PACK tsJIP_MibInst;

where:

 psNext is a pointer for internal use only

 pcName is a pointer to a character string containing the name of the MIB

 u8Index is an 8-bit index value for the MIB on the node
176 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
 asFuncs[] is an array of pointers to callback functions for writing and reading
the MIB variables, where these functions are specified in the macro
JIP_CALLBACK() - this array is automatically populated by the macro

8.1.9 tsJIP_QueryMibResponse

This structure contains the results of a query on a MIB (yielding the MIB ID, MIB index
and name).

typedef struct

{

 uint32 u32MibID;

 uint8 u8MibIndex;

 const char *pcName;

} tsJIP_QueryMibResponse;

where:

 u32MibID is the MIB ID (indicating the MIB type)

 u8MibIndex is the MIB index value (on the node)

 pcName is a pointer to a character string containing the name of the MIB

8.1.10 tsJIP_QueryVarResponse

This structure contains details of a MIB variable.

typedef struct

{

 uint8 u8VarIndex;

 const char *pcName;

 teJIP_VarType eVarType;

 teJIP_AccessType eAccessType;

 teJIP_Security eSecurity;

} tsJIP_QueryVarResponse;

where:

 u8VarIndex is the index number of the variable within the MIB

 pcName is a pointer to a character string representing the name of the variable

 eVarType is a value indicating the data type of the variable (enumerations are
provided in Section 8.2.2)

 eAccessType is a value indicating the types of access to the variable that are
permitted (enumerations are provided in Section 8.2.4)

 eSecurity is a value indicating the level of JIP security applied to the variable
(enumerations are provided in Section 8.2.6)
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 177

Chapter 8
JIP Embedded API Structures and Enums

8.1.11 prSet

For each MIB variable type (see Section 8.2.2), a user-defined callback function must
be provided which can be used to set the value of the variable. A pointer to this ‘Set’
callback function is contained in an internal structure for the variable type, along with
a pointer to the equivalent ‘Get’ callback function (see Section 8.1.12).

The ‘Set’ callback function has the following prototype, according to the variable type:

In the above functions:

 The value to be written to the variable is specified in the parameter i8Val,
i16Val, i32Val, i64Val, u8Val, u16Val, u32Val, u64Val, fVal, or dVal, or in the
location pointed to by pcVal or pu8Val, as appropriate.

 Custom user data (not used by JenNet-IP) can be specified in the location
pointed to by pvCbData (if there is no data, a null pointer is specified).

 For a string or blob, the length of the string/blob is specified through the
parameter u8Len.

 For a table blob, the table entry number of the variable to be set is specified
through the parameter u16Entry.

Variable Type ‘Set’ Callback Function Prototype

E_JIP_VAR_TYPE_INT8 teJIP_Status (*prSet)(int8 i8Val, void *pvCbData);

E_JIP_VAR_TYPE_INT16 teJIP_Status (*prSet)(int16 i16Val, void *pvCbData);

E_JIP_VAR_TYPE_INT32 teJIP_Status (*prSet)(int32 i32Val, void *pvCbData);

E_JIP_VAR_TYPE_INT64 teJIP_Status (*prSet)(int64 i64Val, void *pvCbData);

E_JIP_VAR_TYPE_UINT8 teJIP_Status (*prSet)(uint8 u8Val, void *pvCbData);

E_JIP_VAR_TYPE_UINT16 teJIP_Status (*prSet)(uint16 u16Val, void *pvCbData);

E_JIP_VAR_TYPE_UINT32 teJIP_Status (*prSet)(uint32 u32Val, void *pvCbData);

E_JIP_VAR_TYPE_UINT64 teJIP_Status (*prSet)(uint64 u64Val, void *pvCbData);

E_JIP_VAR_TYPE_FLOAT teJIP_Status (*prSet)(float fVal, void *pvCbData);

E_JIP_VAR_TYPE_DOUBLE teJIP_Status (*prSet)(double dVal, void *pvCbData);

E_JIP_VAR_TYPE_STRING teJIP_Status (*prSet)(const char *pcVal, uint8 u8Len,
void *pvCbData);

E_JIP_VAR_TYPE_BLOB teJIP_Status (*prSet)(const uint8 *pu8Val, uint8 u8Len, void
*pvCbData);

E_JIP_VAR_TYPE_
TABLE_BLOB

teJIP_Status (*prSet)(const uint8 *pu8Val, uint8 u8Len, void
*pvCbData, uint16 u16Entry);

Table 3: ‘Set’ Variable Callback Function Prototypes
178 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.1.12 prGet

For each MIB variable type (see Section 8.2.2), a user-defined callback function must
be provided which can be used to set the value of the variable. A pointer to this ‘Get’
callback function is contained in an internal structure for the variable type, along with
a pointer to the equivalent ‘Set’ callback function (see Section 8.1.11).

The ‘Get’ callback function has the following prototype, according to the variable type:

In the above functions:

 The handle of the packet in which the obtained value will be inserted is
specified through the parameter hPacket (this handle is internal and
transparent to the application).

 Custom user data (not used by JenNet-IP) can be specified in the location
pointed to by pvCbData.

 For a table blob, information on the table is passed to the callback function in
the structure pointed to by psTableData (this structure is described in Section
8.1.13).

Variable Type ‘Get’ Callback Function Prototype

E_JIP_VAR_TYPE_INT8 void (*prGet)(thJIP_Packet hPacket, void *pvCbData);

E_JIP_VAR_TYPE_INT16

E_JIP_VAR_TYPE_INT32

E_JIP_VAR_TYPE_INT64

E_JIP_VAR_TYPE_UINT8

E_JIP_VAR_TYPE_UINT16

E_JIP_VAR_TYPE_UINT32

E_JIP_VAR_TYPE_UINT64

E_JIP_VAR_TYPE_FLOAT

E_JIP_VAR_TYPE_DOUBLE

E_JIP_VAR_TYPE_STRING

E_JIP_VAR_TYPE_BLOB

E_JIP_VAR_TYPE_
TABLE_BLOB

void (*prGet)(thJIP_Packet hPacket, void *pvCbData,
tsJIP_TableData *psTableData);

Table 4: ‘Get’ Variable Callback Function Prototypes
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 179

Chapter 8
JIP Embedded API Structures and Enums

8.1.13 tsJIP_TableData

This structure contains information on a table variable and is used when a request is
received to read the variable.

typedef struct

{

 uint16 u16FirstEntry;

 uint8 u8EntryCount;

 uint16 u16RemainingEntries;

 uint16 u16TableVersion;

} tsJIP_TableData;

where:

 u16FirstEntry is the index of the first requested entry (populated by JIP)

 u8EntryCount is the number of entries requested (populated by JIP)

 u16RemainingEntries is the number of entries in the table after the last
entry read and added to the response packet (populated by application)

 u16TableVersion is the table version, used to detect inconsistencies
between multiple ‘table read’ response packets (populated by application)

8.1.14 tsAssocNodeInfo

This structure contains information about a node that is joining the network.

typedef struct

{

 MAC_ExtAddr_s sMacAddr;

 uint32 u32DeviceClass;

 uint16 u16NetworkAddr;

} tsAssocNodeInfo;

where:

 sMacAddr contains the 64-bit IEEE/MAC address of the joining node

 u32DeviceClass is the Device ID of the joining node

 u16NetworkAddr is the 16-bit network address of the joining node (will
always be 0xFFFE in JenNet-IP)
180 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.1.15 EUI64_s

This structure stores a 64-bit value as two 32-bit words and can be used to hold any
64-bit value.

struct EUI64_s_Tag

{

 uint32 u32L;

 uint32 u32H;

} EUI64_s;

where:

 u32L is the least-significant 32-bit word of the 64-bit value

 u32H is the most-significant 32-bit word of the 64-bit value

8.1.16 in6_addr

This structure contains a uniion that can be used to store a 128-bit IPv6 address as an
array with one of the following sizes/formats:

 sixteen 8-bit elements

 eight 16-bit elements

 four 32-bit elements

typedef struct

{

 union {

 uint8 u6_addr8[16];

 uint16 u6_addr16[8];

 uint32 u6_addr32[4];

 } in6_u;

 #define s6_addr in6_u.u6_addr8

 #define s6_addr16 in6_u.u6_addr16

 #define s6_addr32 in6_u.u6_addr32

} in6_addr;

where:

 u6_addr8[16] is the address as sixteen 8-bit values

 u6_addr16[8] is the address as eight 16-bit values

 u6_addr32[4] is the address as four 32-bit values

The same IPv6 address storage format should be used throughout an application, as
otherwise endianness will become an issue.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 181

Chapter 8
JIP Embedded API Structures and Enums

8.1.17 tsStackReset

This structure contains information which relates to the cause of a stack reset.

typedef struct

{

 uint8 u8StackCurrentState;

 uint8 u8StackResumeState;

 uint8 u8LostPacketCount;

 uint8 u8UnackPings;

 uint8 u8EstablishRouteAttempts;

} tsStackReset;

where:

 u8StackCurrentState is the JenNet state when the reset was initiated (for
internal stack use only)

 u8StackResumeState is the JenNet state after the reset has completed (for
internal stack use only)

 u8LostPacketCount is the number of failed packet transmissions (only valid
on an End Device)

 u8UnackPings is the number of unacknowledged ping requests

 u8EstablishRouteAttempts is the number of route establishments
attempted
182 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.2 Enumerations

8.2.1 teJIP_Device

The wireless network device type (Co-ordinator, Router or End Device) is specified in
the stack initialisation data (tsJIP_InitData) using the enumerations below.

typedef enum PACK

{

 E_JIP_DEVICE_COORDINATOR = E_6LP_COORDINATOR,

 E_JIP_DEVICE_ROUTER = E_6LP_ROUTER,

 E_JIP_DEVICE_END_DEVICE = E_6LP_END_DEVICE

} teJIP_Device;

8.2.2 teJIP_VarType

The following enumerated list contains the possible types for MIB variables.

typedef enum

{

 E_JIP_VAR_TYPE_INT8,

 E_JIP_VAR_TYPE_INT16,

 E_JIP_VAR_TYPE_INT32,

 E_JIP_VAR_TYPE_INT64,

 E_JIP_VAR_TYPE_UINT8,

 E_JIP_VAR_TYPE_UINT16,

 E_JIP_VAR_TYPE_UINT32,

 E_JIP_VAR_TYPE_UINT64,

 E_JIP_VAR_TYPE_FLOAT,

 E_JIP_VAR_TYPE_DOUBLE,

 E_JIP_VAR_TYPE_STRING,

 E_JIP_VAR_TYPE_BLOB,

 E_JIP_VAR_TYPE_TABLE_BLOB

} PACK teJIP_VarType;
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 183

Chapter 8
JIP Embedded API Structures and Enums

8.2.3 teJIP_Access

The following list defines the types of access available for a MIB variable (a MIB
variable can have more than one access type by combining two or more of these
enumerations in a logical-OR operation).

typedef enum

{

 E_JIP_ACCESS_TYPE_READ = 0x01,

 E_JIP_ACCESS_TYPE_WRITE = 0x02,

 E_JIP_ACCESS_TYPE_TRAP = 0x04,

} PACK teJIP_Access;

The above enumerations are detailed in the table below.

8.2.4 teJIP_AccessType

The following enumerations are used to specify the accessibility of a parameter.

enum _eJIP_AccessType

{

 E_JIP_ACCESS_TYPE_CONST,

 E_JIP_ACCESS_TYPE_READ_ONLY,

 E_JIP_ACCESS_TYPE_READ_WRITE,

} PACK;

#ifdef WIN32

typedef uint8 teJIP_AccessType;

#else

typedef enum _eJIP_AccessType teJIP_AccessType;

#endif

The above enumerations are detailed in the table below.

Access Type Description

E_JIP_ACCESS_TYPE_READ Variable can be read remotely

E_JIP_ACCESS_TYPE_WRITE Variable can be set remotely

E_JIP_ACCESS_TYPE_TRAP Variable can be trapped

Access Type Description

E_JIP_ACCESS_TYPE_CONST Constant - cannot be changed

E_JIP_ACCESS_TYPE_READ_ONLY Variable is read-only

E_JIP_ACCESS_TYPE_READ_WRITE Variable is read- and write-enabled
184 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.2.5 teJIP_PollResponse

typedef enum PACK

{

E_JIP_POLL_NO_DATA = 0,

E_JIP_POLL_DATA_READY,

E_JIP_POLL_TIMEOUT,

E_JIP_POLL_ERROR,

E_JIP_POLL_PENDING

} teJIP_PollResponse;

The above enumerations are detailed in the table below.

8.2.6 teJIP_Security

Note that JIP-level security is not currently implemented (but JenNet-level security is
available).

typedef enum

{

 E_JIP_SECURITY_NONE /* Security is not implemented */

} PACK teJIP_Security;

Enumeration Description

E_JIP_POLL_NO_DATA Poll complete but no data pending

E_JIP_POLL_DATA_READY Poll complete and data received

E_JIP_POLL_TIMEOUT Poll timed-out, no data received

E_JIP_POLL_ERROR Problem with request

E_JIP_POLL_PENDING Request accepted but not complete yet
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 185

Chapter 8
JIP Embedded API Structures and Enums

8.2.7 teLowEnergyStatus

The following enumerations are used to instruct Routers in the maintenance of the
local list of registered low-energy devices.

typedef enum PACK

{

 E_LEF_ADD,

 E_LEF_DELETE

} teLowEnergyStatus;

The above enumerations are detailed in the table below.

8.3 Events

This section details events that the application may need to handle on a wireless node
of a JenNet-IP system - stack and data events are detailed here, while peripheral
events are covered in the JN516x Integrated Peripherals API User Guide
(JN-UG-3087) and JN514x Integrated Peripherals API User Guide (JN-UG-3066).

8.3.1 teJIP_StackEvent

The stack events that are passed up to the vJIP_StackEvent() callback function are
listed and described below.

typedef enum

{

E_STACK_STARTED,

E_STACK_JOINED,

E_STACK_NODE_JOINED,

 E_STACK_NODE_LEFT,

E_STACK_TABLES_RESET,

E_STACK_RESET,

E_STACK_POLL,

 E_STACK_NODE_JOINED_NWK,

 E_STACK_NODE_LEFT_NWK,

 E_STACK_NODE_AUTHORISE,

 E_STACK_ROUTE_CHANGE,

 E_STACK_GROUP_CHANGE

} teJIP_StackEvent;

Enumeration Description

E_LEF_ADD Add a device to the local list of registered low-energy devices

E_LEF_DELETE Remove a device from the local list of registered low-energy devices
186 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The enumerations in the above structure are described in the table below.

8.3.2 teJIP_DataEvent

The data events that are passed up to the v6LP_DataEvent() callback function are
listed and described below.

typedef enum

{

E_DATA_SENT,

E_DATA_SEND_FAILED,

E_DATA_RECEIVED,

E_IP_DATA_RECEIVED,

E_6LP_ICMP_MESSAGE

} teJIP_DataEvent;

Stack Event Description

E_STACK_STARTED Co-ordinator has started (see tsNwkInfo in Section 8.1.2)

E_STACK_JOINED This node has joined the network (see tsNwkInfo in Section
8.1.2)

E_STACK_NODE_JOINED A device has joined this parent (see tsAssocNodeInfo in
Section 8.1.14)

E_STACK_NODE_LEFT A device has left this parent (see tsAssocNodeInfo in Sec-
tion 8.1.14)

E_STACK_TABLES_RESET Tables have been reset (e.g. Neighbour table on a Router or
the Co-ordinator). Used as part of initialisation on all node
types (including End Devices which have no tables) and is
generated just before the stack starts

E_STACK_RESET Stack has been reset (see tsStackReset in Section 8.1.17)

E_STACK_POLL A deferred poll response has arrived (see
teJIP_PollResponse in Section 8.2.5)

E_STACK_NODE_JOINED_NWK A device has joined the network (only seen at Co-ordinator)
(see tsAssocNodeInfo in Section 8.1.14)

E_STACK_NODE_LEFT_NWK A device has left the network (only seen at Co-ordinator) (see
tsAssocNodeInfo in Section 8.1.14)

E_STACK_NODE_AUTHORISE The device with the specified address is trying to join but its
commissioning key must be obtained from the Border-Router
(see MAC_ExtAddr_s in Section 8.1.3)

E_STACK_ROUTE_CHANGE A device has moved (only seen at Co-ordinator) (see tsAs-
socNodeInfo in Section 8.1.14)

E_STACK_GROUP_CHANGE One or more multicast addresses have been added or
removed from network (see tsJIP_StackGroupChange in
Section 8.1.5). The event is generated on the Co-ordinator for
all changes within the wireless network and is also triggered
on the node where a modification is made.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 187

Chapter 8
JIP Embedded API Structures and Enums

The enumerations in the above structure are described in the table below.

8.4 Return Codes

8.4.1 teJIP_Status

The following status responses are returned by the JIP functions.

typedef enum

{

 E_JIP_OK = 0x00,

 E_JIP_ERROR_TIMEOUT = 0x7f,

 E_JIP_ERROR_BAD_MIB_INDEX = 0x8f,

 E_JIP_ERROR_BAD_VAR_INDEX = 0x9f,

 E_JIP_ERROR_NO_ACCESS = 0xaf,

 E_JIP_ERROR_BAD_BUFFER_SIZE = 0xbf,

 E_JIP_ERROR_WRONG_TYPE = 0xcf,

 E_JIP_ERROR_BAD_VALUE = 0xdf,

 E_JIP_ERROR_DISABLED = 0xef,

 E_JIP_ERROR_FAILED = 0xff

} PACK teJIP_Status;

The above enumerations are detailed in the table below.

Data Event Description

E_DATA_SENT Packet sent successfully

E_DATA_SEND_FAILED Packet send failed (see u32JIP_GetErrNo() function)

E_DATA_RECEIVED Packet received

E_IP_DATA_RECEIVED Packet received at IP layer

E_6LP_ICMP_MESSAGE ICMP message passed up to the application
188 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
8.4.2 teJenNetStatusCode

This structure contains JenNet status codes.

typedef enum

{

 E_JENNET_SUCCESS,

 E_JENNET_DEFERRED,

 E_JENNET_ERROR

} teJenNetStatusCode;

The above enumerations are detailed in the table below.

Enumeration Description

E_JIP_OK Operation was successful

E_JIP_ERROR_TIMEOUT Not applicable (not used by the stack)

E_JIP_ERROR_BAD_MIB_INDEX Specified MIB index value not found in registered MIBs

E_JIP_ERROR_BAD_VAR_INDEX Variable with specified index not found in MIB

E_JIP_ERROR_NO_ACCESS Attempt to set a variable for which write access is not
permitted

E_JIP_ERROR_BAD_BUFFER_SIZE Requested operation would have exceeded available
buffer space

E_JIP_ERROR_WRONG_TYPE Variable type in requested set operation did not match
the type of the variable itself

E_JIP_ERROR_BAD_VALUE Value in requested set operation was not appropriate
(e.g. out of range)

E_JIP_ERROR_DISABLED Attempt has been made to access a variable that is dis-
abled

E_JIP_ERROR_FAILED Non-specific failure

Enumeration Description

E_JENNET_SUCCESS Operation completed successfully

E_JENNET_DEFERRED Operation is on-going (e.g. packet transmission)

E_JENNET_ERROR Operation failed
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 189

Chapter 8
JIP Embedded API Structures and Enums

8.5 Error Codes and Enumerations

This section details the error enumerations returned by the function
u32JIP_GetErrNo(). This function returns a 32-bit value, in which bits 7-0 represent
an error code and bits 15-8 represent further error information (bits 31-16 are
reserved).

8.5.1 te6LP_ErrorCode

An error code appears as bits 7-0 of the value returned by u32JIP_GetErrNo().

typedef enum PACK

{

 E_6LP_NETWORK_FORMATION // 0x01

 E_6LP_6LP_BUILD, // 0x02

 E_6LP_SEND_FAIL, // 0x03

 E_6LP_ICMP_BUILD, // 0x04

 E_6LP_COMPRESS_FAIL, // 0x05

 E_6LP_CHECKSUM_FAIL, // 0x06

 E_6LP_TRANSMIT_FAIL, // 0x07

 E_6LP_BITSTREAM_FAIL, // 0x08

 E_6LP_IPV6_BUFFER_FAIL, // 0x09

 E_6LP_IPV6_HEADER_BUILD, // 0x0a

 E_6LP_IPV6_HEADER_INFO, // 0x0b

 E_6LP_PING_FAIL, // 0x0c

 E_6LP_RX_FAIL, // 0x0d

 E_6LP_RX_DEFRAG_TIMER_FAIL, // 0x0e

 E_6LP_SOCKET_FAIL, // 0x0f

 E_6LP_SOCKET_BIND_FAIL, // 0x10

 E_6LP_SOCKET_SENDTO_FAIL, // 0x11

 E_6LP_SOCKET_GET_NEXT_PACKET_FAIL, // 0x12

 E_6LP_SOCKET_IP_SENDTO_FAIL, // 0x13

 E_6LP_SOCKET_RECV_FROM_FAIL, // 0x14

 E_6LP_SOCKET_IP_RECV_FROM_FAIL, // 0x15

 E_6LP_SOCKET_CLOSE, // 0x16

 E_6LP_SOCKET_COMPRESSION_OPT_FAIL, // 0x17

 E_6LP_SOCKET_SET_NEXT_HEADER_FAIL, // 0x18

 E_6LP_SOCKET_EVT_HANDLER, // 0x19

 E_6LP_IP_SENDTO_FAIL, // 0x1a

 E_6LP_IP_RECV_FROM_FAIL, // 0x1b

} te6LP_ErrorCode;

The enumerations in the above structure are described in the table below.
190 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Error Code (bits 7-0 of returned value) Description

E_6LP_NETWORK_FORMATION Network formation error

E_6LP_6LP_BUILD 6LoWPAN stack creation error

E_6LP_SEND_FAIL Attempt to send IPv6 packet has failed

E_6LP_ICMP_BUILD ICMP stack module error

E_6LP_COMPRESS_FAIL 6LoWPAN compression failed

E_6LP_CHECKSUM_FAIL Failure in 6LoWPAN checksum generation

E_6LP_TRANSMIT_FAIL Attempt to transmit 802.15.4 frame has failed

E_6LP_BITSTREAM_FAIL 6LoWPAN bitstream module error

E_6LP_IPV6_BUFFER_FAIL IPv6 buffer error

E_6LP_IPV6_HEADER_BUILD IPv6 header creation error

E_6LP_IPV6_HEADER_INFO IPv6 header access function error

E_6LP_PING_FAIL Reserved

E_6LP_RX_FAIL IPv6 receive module error

E_6LP_RX_DEFRAG_TIMER_FAIL Receive defragmentation timer error

E_6LP_SOCKET_FAIL Socket creation failure

E_6LP_SOCKET_BIND_FAIL Socket binding failure

E_6LP_SOCKET_SENDTO_FAIL ‘Send to’ function call has failed

E_6LP_SOCKET_GET_NEXT_PACKET_FAIL No next packet in the system for specified
socket

E_6LP_SOCKET_IP_SENDTO_FAIL IP-layer ‘Send to’ function call has failed

E_6LP_SOCKET_RECV_FROM_FAIL ‘Receive from’ function call has failed

E_6LP_SOCKET_IP_RECV_FROM_FAIL IP-layer ‘Receive from’ function call has failed

E_6LP_SOCKET_CLOSE Socket close error

E_6LP_SOCKET_COMPRESSION_OPT_FAIL Reserved for future use

E_6LP_SOCKET_SET_NEXT_HEADER_FAIL ‘Set next header’ function call has failed

E_6LP_SOCKET_EVT_HANDLER Socket event handler error

E_6LP_IP_SENDTO_FAIL Attempt by IP layer to send IPv6 packet failed

E_6LP_IP_RECV_FROM_FAIL Attempt by IP layer to receive IPv6 packet failed
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 191

Chapter 8
JIP Embedded API Structures and Enums

8.5.2 te6LP_ErrorInfo

Error information appears as bits 15-8 of the value returned by u32JIP_GetErrNo().

typedef enum PACK

{

 I_6LP_NONE = 0,

 I_6LP_PARAM, // 0x01

 I_6LP_START_FAIL, // 0x02

 I_6LP_MTU_ERROR, // 0x03

 I_6LP_BUFFER_UNKNOWN, // 0x04

 I_6LP_DEVICE_UNKNOWN, // 0x05

 I_6LP_SOCKET_PROTOCOL_UNSUPPORTED, // 0x06

 I_6LP_PACKET_TOO_LARGE, // 0x07

 I_6LP_NO_TCP_HANDLER, // 0x08

 I_6LP_TCP_ERROR, // 0x09

 I_6LP_NEXT_HEADER_UNSUPPORTED, // 0x0a

 I_6LP_BUFFER_TOO_SMALL, // 0x0b

 I_6LP_BUFFER_RECOVERY, // 0x0c

 I_6LP_BUFFER_NONE, // 0x0d

 I_6LP_PING_ID_ERROR, // 0x0e

 I_6LP_PING_TIMER_FAIL, // 0x0f

 I_6LP_PING_NO_FREE_SERVER_INSTANCES, // 0x10

 I_6LP_PING_NO_FREE_BUFFERS, // 0x11

 I_6LP_PING_SEND_PING_FAILED, // 0x12

 I_6LP_FRAME_FAIL, // 0x13

 I_6LP_MESH_CB_FAIL, // 0x14

 I_6LP_BCAST_CB_FAIL, // 0x15

 I_6LP_IPV6_HEADER_FAIL, // 0x16

 I_6LP_6LP_FRAGMENT_FAIL, // 0x17

 I_6LP_SOCKETS_NONAVAILABLE, // 0x18

 I_6LP_SOCKET_NOT_FOUND, // 0x19

 I_6LP_SOCKET_RANGE, // 0x1a

 I_6LP_SOCKET_FAMILY, // 0x1b

 I_6LP_DEST_PREFIX_MISMATCH, // 0x1c

 I_6LP_NO_COMP_OPTIONS, // 0x1d

} te6LP_ErrorInfo;

The enumerations in the above structure are described in the table below.

Error Information (bits 15-8 of returned value) Description

I_6LP_NONE No error

I_6LP_PARAM Function parameter error (user error)
192 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
I_6LP_START_FAIL 6LoWPAN network has failed to start

I_6LP_MTU_ERROR Size of MTU out of valid range

I_6LP_BUFFER_UNKNOWN System buffer does not exist

I_6LP_DEVICE_UNKNOWN Device type unrecognised on network crea-
tion

I_6LP_SOCKET_PROTOCOL_UNSUPPORTED Socket has been configured to unsupported
protocol

I_6LP_PACKET_TOO_LARGE Data packet too large for system to handle

I_6LP_NO_TCP_HANDLER TCP protocol plug-in is not present

I_6LP_TCP_ERROR TCP protocol error

I_6LP_NEXT_HEADER_UNSUPPORTED Unrecognised IPv6 next header

I_6LP_BUFFER_TOO_SMALL User data buffer too small

I_6LP_BUFFER_RECOVERY Buffer recovery failed after transmit buffers
exhausted

I_6LP_BUFFER_NONE No system buffers available

I_6LP_PING_ID_ERROR Reserved

I_6LP_PING_TIMER_FAIL Reserved

I_6LP_NO_FREE_SERVER_INSTANCES Reserved

I_6LP_NO_FREE_BUFFERS Reserved

I_6LP_PING_SEND_PING_FAILED Reserved

I_6LP_FRAME_FAIL Received 802.15.4 frame is invalid

I_6LP_MESH_CB_FAIL No mesh header callback installed

I_6LP_BCAST_CB_FAIL No broadcast header callback installed

I_6LP_IPV6_HEADER_FAIL Received IPv6 header is corrupted

I_6LP_6LP_FRAGMENT_FAIL Illegal 6LoWPAN fragment received

I_6LP_SOCKETS_NONAVAILABLE No socket free on the device

I_6LP_SOCKET_NOT_FOUND Specified socket ID does not exist on device

I_6LP_SOCKET_RANGE Specified socket ID is out of range

I_6LP_SOCKET_FAMILY Socket family value is not supported

I_6LP_DEST_PREFIX_MISMATCH Reserved for future use

I_6LP_NO_COMP_OPTIONS Reserved for future use
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 193

Chapter 8
JIP Embedded API Structures and Enums

194 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
9. JenNet-IP Parameters

This chapter details the parameters that can be configured to determine the properties
and behaviour of the wireless network. These parameters are divided into three
categories:

 JenNet network configuration parameters (see Section 9.1)

 JenNet network profile parameters (see Section 9.2)

 Stack parameters (see Section 9.3)

9.1 JenNet Network Parameters (tsNetworkConfigData)

This section details the JenNet parameters that can be set on individual nodes using
the vJIP_ConfigureNetwork() callback function (otherwise their default values will be
used). Values should be specified only for those parameters that are to be changed
from their default values. For advice on using some of these parameters, refer to
Appendix A.

These parameters are contained in the following structure.

typedef struct

{

 void *pvDoNotChange;

 uint16 u16PanID;

 uint8 u8Channel;

 uint32 u32ScanChannels;

 bool_t bPurgeInactiveED;

 uint32 u32RoutePurgeInterval;

 uint32 u32RouteImportInterval;

 bool_t bSleepDuringBackoff;

 uint8 u8EndDevicePingInterval;

 uint32 u32EndDeviceScanTimeout;

 uint32 u32EndDeviceScanSleep;

 uint32 u32EndDevicePollPeriod;

 uint32 u32EndDeviceActivityTimeout;

 uint32 u32RouterActivityTimeout;

 bool_t bPermitExtNwkPkts;

 uint32 u32RoutingTableEntries;

 void *pvRoutingTableSpace;

 uint8 u8InternalTimer;

 bool_t bRecoveredFromJPDM;

 uint16 u16CommWindow;

} tsNetworkConfigData;
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 195

Chapter 9
JenNet-IP Parameters

The elements of this structure are described in the table below (note that parameters
tagged with @ are also included in the structure tsJIP_InitData described in
Section 8.1.1).

JenNet Parameter Description
Default
Value

Range

u16PanID @ 16-bit PAN ID to identify network (if no
existing network with same PAN ID).
Co-ordinator only

0xAAAA 0-0xFFFE

u8Channel The 2.4-GHz channel to be used by
the network or in a channel scan (see
u32ScanChannels below).
Co-ordinator only

0 0: Channel scan
11-26: Fixed channel

u32ScanChannels @ Bitmap (32 bits) of the set of channels
to consider when performing a scan
of the 2.4-GHz band for a suitable
channel to use. The Co-ordinator will
select the quietest channel from
those available. Other node types will
scan the possible channels to search
for the network. A scan must have
been enabled using u8Channel (=0).

0x07FFF800
(all channels)

0x00000800 -
0x07FFF800

(Bit 11 set  Ch 11,
Bit 12 set  Ch 12,...)

bPurgeInactiveED Enables automatic removal of an End
Device child if the child has not
exchanged data with the parent within
the timeout period specified through
u32EndDeviceActivityTimeout.
Co-ordinator and Routers only

TRUE
(Enabled)

TRUE: Enable
FALSE: Disable

u32RoutePurgeInterval Time interval between maintenance
checks of two consecutive entries in a
Routing table. If a route remains
unused during two complete Routing
table maintenance cycles, the validity
of the route is checked. If the route is
invalid, its entry is removed. Set in
units of 100 ms.
Co-ordinator and Routers only

10
(1 second)

10-100

u32RouteImportInterval Time interval between consecutive
route importation requests, used by
the Co-ordinator to learn new routes
from Routers. Set in units of 100 ms.
Co-ordinator only

10
(1 second)

10-100

bSleepDuringBackoff Enables sleep for an End Device dur-
ing start-up. This helps avoid network
congestion.
End Devices only

FALSE
(Disabled)

TRUE: Sleep
FALSE: Do not sleep

u8EndDevicePingInterval Number of sleep cycles between
auto-pings generated by an End
Device (to its parent).
End Devices only

1 0-255
Zero value disables
pings

Table 5: JenNet Parameters in Network Configuration
196 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
u32EndDeviceScanTimeout Timeout after which device abandons
a failed radio-channel scan.

5 seconds Do not change from
default value

u32EndDeviceScanSleep Amount of time following a failed scan
that an End Device waits before start-
ing another scan. Set in milliseconds.
End Devices only

10000 or
0x2710
(10 seconds)

1-0x07FFFFFF
Values below 0x3E8
(1 second) are not
recommended

u32EndDevicePollPeriod Time between auto-poll data requests
sent from an End Device (while
awake) to its parent. Set in units of
10 ms.
End Devices only

500 or 0x1F4
(5 seconds)

0-0xFFFFFFFF
Setting this value to 0
means the device will
not auto-poll

u32EndDeviceActivityTime
out

Timeout period for communication
(excluding data polling) from an End
Device child. If no message is
received from the End Device within
this period, the child is assumed lost
and is removed from the Neighbour
table (and Routing tables higher in
the network). This timeout period
must be greater than the period
between consecutive pings.
Co-ordinator and Routers only

600
(60 seconds)

0-0xFFFFFFFF
Timeout is value set
multiplied by 100 ms

u32RouterActivityTimeout Timeout period for communication
from a Router child. If no message is
received from the Router within this
period, the child is assumed lost and
is removed from the Neighbour table
(and Routing tables higher in the net-
work).
Co-ordinator and Routers only

u16RouterPing
Period
x
u8MaxFailedPk
ts

0-0xFFFFFFFF
Timeout is value set
multiplied by 10 ms

bPermitExtNwkPkts Allows packets from other 802.15.4-
based wireless networks to be
received.

FALSE
(Disallowed)

TRUE: Allow
FALSE: Disallow

u32RoutingTableEntries @ Number of elements in array used to
store the Routing table. Should be set
according to the maximum number of
nodes in the network, in order to limit
memory space required for the table.
Co-ordinator and Routers only

- 25-1000

*pvRoutingTableSpace Pointer to the location in memory at
which the Routing table array is
stored. The Routing table is an array
of structures. Storage for the table is
allocated by the stack. This pointer is
provided in case the application
needs to access the Routing table
directly.
Co-ordinator and Routers only

NULL -

Table 5: JenNet Parameters in Network Configuration
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 197

Chapter 9
JenNet-IP Parameters

@ indicates parameter also included in structure tsJIP_InitData (see Section 8.1.1).

u8InternalTimer On-chip timer to be used by JenNet
layer of stack. The application must
not use this timer for any other pur-
pose.

E_AHI_DEVICE_
TICK_TIMER

E_AHI_DEVICE_TIMER0
or
E_AHI_DEVICE_TIMER1
or
E_AHI_DEVICE_TICK_TIM
ER

bRecoveredFromJPDM Not supported in JenNet-IP 0 0

u16CommWindow Amount of time for which a commis-
sioning key is held by a node during
the commissioning process (a joining
node must perform route establish-
ment within this time). The time is
expressed in units of 100 ms.

600
(1 minute)

0-65535

Table 5: JenNet Parameters in Network Configuration
198 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
9.2 JenNet Network Profile Parameters (tsNwkProfile)

This section details the parameters that are set on the Co-ordinator for the whole
wireless network and are inherited by other devices when they join the network. A
given set of parameter values constitute a network profile, each profile having a
unique index. Standard profiles are provided in the JenNet-IP software (see Table 7).

typedef struct

{

 uint8 u8MaxChildren; /* Set in bJnc_SetRunProfile */

 uint8 u8MaxSleepingChildren; /* Set in bJnc_SetRunProfile */

 uint8 u8MaxFailedPkts; /* Set in bJnc_SetRunProfile */

 uint8 u8MaxBcastTTL; /* Set in bJnc_SetRunProfile */

 uint16 u16RouterPingPeriod; /* Set in bJnc_SetRunProfile */

 uint8 u8MinBeaconLQI; /* Set in bJnc_SetJoinProfile */

 uint16 u16ScanBackOffMin; /* Set in bJnc_SetJoinProfile */

 uint16 u16ScanBackOffMax; /* Set in bJnc_SetJoinProfile */

 uint16 u16EstRtBackOffMin; /* Set in bJnc_SetJoinProfile */

 uint16 u16EstRtBackOffMax; /* Set in bJnc_SetJoinProfile */

}tsNwkProfile;

The elements of this structure are described in Table 6 below.

Note: JenNet network profiles are introduced in Section
3.7. Functions for setting and accessing the profile
parameters are detailed in Section 5.3.

JenNet Parameter Description
Default
Value

Range

u8MaxChildren Maximum number of children the
node can have.
Co-ordinator and Routers only

10 0-16

u8MaxSleepingChildren Maximum number of children of a
node that can be End Devices (nodes
capable of sleeping). This value must
be less than or equal to
u8MaxChildren. The remaining
child nodes are reserved exclusively
for Routers, although any number of
children can be Routers.
Co-ordinator and Routers only

8 0-u8MaxChildren

u8MaxFailedPkts Number of missed communications
(MAC acknowledgments) before
parent or child considered to be lost.

5 0-255
Zero value disables
the feature

Table 6: JenNet Parameters in Network Profile
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 199

Chapter 9
JenNet-IP Parameters

The above network profile parameters are divided into two categories:

 Join parameters: u8MinBeaconLQI, u16ScanBackOffMin,
u16ScanBackOffMax, u16EstRtBackOffMin, u16EstRtBackOffMax

 Run parameters: u8MaxChildren, u8MaxSleepingChildren,
u8MaxFailedPkts, u8MaxBcastTTL, u16RouterPingPeriod

It is possible to use the ‘join parameters’ of one profile with the ‘run parameters’ of
another profile (set using the functions described in Section 5.3).

The standard network profiles provided in the JenNet-IP software are listed and
detailed in Table 7 below.

u8MaxBcastTTL The maximum number of hops that a
broadcast message can make.

5 1-255

u16RouterPingPeriod Time between auto-pings generated
by a Router (to its parent). Set in units
of 10 ms. The same value should be
set in all routing nodes in the network.
Co-ordinator and Routers only

500
(5 seconds)

0-65535
Zero value disables
pings

u8MinBeaconLQI Radio signal strength threshold below
which beacons from potential parent
will be rejected.
Routers and End Devices only

0
(All accepted)

0-255

u16ScanBackOffMin The minimum value of the random
delay applied before scanning for a
network. This time is expressed in
units of 10 ms.
Routers and End Devices only

100
(1 second)

0-65535

u16ScanBackOffMax The maximum value of the random
delay applied before scanning for a
network. This time is expressed in
units of 10 ms.
Routers and End Devices only

1000
(10 seconds)

0-65535

u16EstRtBackOffMin The minimum value of the random
delay applied before requesting route
establishment. This time is expressed
in units of 10 ms.
Routers and End Devices only

100
(1 second)

0-65535

u16EstRtBackOffMax The maximum value of the random
delay applied before requesting route
establishment. This time is expressed
in units of 10 ms.
Routers and End Devices only

1000
(10 seconds)

0-65535

Table 6: JenNet Parameters in Network Profile
200 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
* Network sizes indicated above are for guidance only and should not be assumed to be rigid

Parameter/Property
Profile Index

0 1 2 3 4 5 6 7 8 9

u8MaxChildren 10 16 10 16 10 16 10 16 3 3

u8MaxSleepingChildren 8 12 8 12 8 12 8 12 0 0

u8MaxFailedPkts 7 7 5 5 5 5 5 5 5 5

u8MaxBcastTTL 16 16 12 12 10 10 8 8 16 16

u16RouterPingPeriod 1500 1500 1000 1000 700 700 500 500 0 0

u8MinBeaconLQI 55 55 45 45 40 40 35 35 55 55

u16ScanBackOffMin 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s

u16ScanBackOffMax 10 s 10 s 5 s 5 s 5 s 5 s 3 s 3 s 3 s 10 s

u16EstRtBackOffMin 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s

u16EstRtBackOffMax 10 s 10 s 5 s 5 s 5 s 5 s 3 s 3 s 3 s 10 s

Network Size * > 250 > 250 150 -
250

150 -
250

50 -
150

50 -
150

< 50 < 50 < 50 150 -
250

Tree Type Sparse Bushy Sparse Bushy Sparse Bushy Sparse Bushy - -

Table 7: Standard Network Profiles

Note: Profiles 0-7 are intended for full JenNet-IP
systems (with both WPAN and LAN/WAN domains)
while profiles 8 and 9 are intended for standalone
WPANs, described in Chapter 11. Profile 0 is the
default.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 201

Chapter 9
JenNet-IP Parameters

9.3 Stack Parameters

This section details parameters that are pre-set in the stack but can be modified at run-
time before initialising the stack. Some of these parameters do not appear in the
header files and therefore the parameters should be explicitly declared before use.
They are mostly concerned with performance tuning and should normally be left at
their default values.

The parameters are listed and detailed in the table below.

Caution: All testing has been conducted with the default
values for these parameters and changes may affect
network performance and/or stability.

Parameter Type Values/Units Description

b6LP_AlwaysBroadcast bool_t Boolean
Default: FALSE

Indicates whether all transmissions within the
wireless network will be treated as broadcasts:
TRUE to transmit all packets as JenNet broad-
casts, FALSE to transmit a unicast packet as a
real unicast but a multicast packet as a JenNet
broadcast. If set to TRUE, communication is still
possible with an individual node

u8_6LP_GCastTimeout uint8 Default: 60 secs
Max: 255 secs

Time between MLD* transmissions

u8_6LP_GCastShortTimeout uint8 Default: 5 secs
Max: 255 secs

Time between failed MLD* transmission and
retry

u8_6LP_GCastAddrStoreEntries uint8 Default: 12
Max: 255

Number of addresses that can be stored and for-
warded, for MLD*. Each address is 16 bytes
long

u8SocketMaxGroupAddrs uint8 Default: 8
Max: 255

Total number of multicast addresses that can be
registered to sockets. Each address is 16 bytes
long.

u8_6LPQSize uint8 Default: 8
Max: 255

Size of internal queue for non-timer events
between lower stack layers and JIP layer.
Increase if function v_6LP_Tick() is called infre-
quently. Each entry is 140 bytes long

u8_6LPTimerQSize uint8 Default: 8
Max: 255

Size of internal queue for timer events between
lower stack layers and JIP layer. Increase if
function v_6LP_Tick() is called infrequently.
Each entry is 8 bytes long

Table 8: Stack Parameters
202 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
* MLD = Multicast Listener Discovery

u16ClocksPerTick unint16 Default: 0
Max: 65535

Configures throttling mechanism for
v_6LP_Tick(). If left at 0, the 6LPQ and
6LPTimerQ queues are processed every time
v_6LP_Tick() is called. Otherwise, they are only
processed when u16ClocksPerTick symbol
clock periods have passed since they were proc-
essed. This allows v_6LP_Tick() to be called
frequently whilst limiting how often it does any-
thing. This improves reliability of broadcast and
fragment transmissions. Unlike the other param-
eters in this table, this value can be altered at
any time

u8OND_SectorsAvailable uint8 Default: 4
Max: 255

Number of NVM sectors available for the stor-
age of application images. Needed for OND
only. This parameter is only applicable to
JN5142-J01 - for other chips, the value is fixed:
4 for JN5148-J01 and JN5164, 8 for JN5168

u8OND_SectorSize uint8 Default: 64 KB
Max: 255 KB

Size of each NVM sector (this value is dictated
by the NVM device used). Needed for OND only.
This parameter is only applicable to JN5142-J01
- for other chips, the value is fixed: 64 for
JN5148-J01, 32 for JN516x

u8OND_SrvMaxServers uint8 Default: 2
Max: 16

Number of entries in the list of OND servers held
on the Co-ordinator

gMAC_u8MaxBuffers uint8 Default: 5
Max: 255

For future use

bLastPktDirect bool_t Boolean Indicates whether a received packet came
directly from the originator (TRUE) or came via
one or more hops (FALSE). The parameter can
be read by the application in a callback function
invoked by the stack and is only valid for the
duration of the callback function execution.

u8LastPktLqi uint8 Min: 0
Max: 255

Indicates the link quality (LQI value) of received
over-air data. The valid range is 0 (poorest qual-
ity) to 255 (highest quality). The parameter can
be read by the application in a callback function
invoked by the stack and is only valid for the
duration of the callback function execution.

Parameter Type Values/Units Description

Table 8: Stack Parameters
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 203

Chapter 9
JenNet-IP Parameters

204 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Part III:
Optional Features
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 205

206 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
10. Over-Network Download (OND)

This Chapter describes the optional Over-Network Download (OND) facility that is
available in a JenNet-IP system. OND provides the capability to upgrade application
software on the nodes of a JenNet-IP WPAN by:

 distributing the replacement software through a WPAN from a “server” device in
the LAN/WAN domain

 updating the software in a node with minimal interruption to node operation

If required, OND must be integrated into the applications that run on the nodes of the
WPAN. Functions and other resources are provided to aid this integration.

10.1 OND Terminology

The following key terms/concepts are used in the description of OND:

10.2 OND Features

The main features of OND are summarised below:

 OND occurs in the background, so the network continues to operate normally
during a download:

 Takes up to an hour to update an image across a 100-node network

 Download time does not vary much with network size

 Rate of download can be adjusted as required

 A new image can be:

 Automatically sent to all interested nodes at once, or to specific nodes

 Pushed into the network from outside

 Pulled by individual nodes

 Servers can be located anywhere in the IP part of the system

 All JenNet-IP routing nodes can act as intermediate image servers:

 Can serve their own image or one for a different device type

 Network traffic is kept to a minimum

 Nodes can be configured to reset automatically once the new image is
downloaded, or under control of their application, or under command from a
remote device

Term Description

Image Binary file containing stack and application code (and data) to be run on a device

Server Device that stores an image for other devices and distibutes it via OND
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 207

Chapter 10
Over-Network Download (OND)

 Border-Router provides interfaces to load new images, to push them into the
network and to initiate a reset

 Web interface

 Command line interface

 JIP MIB allows monitoring of downloads and requests for new images on each
device

 API is also provided for local administration by the node's application

10.3 General Operation

OND allows the application software on a JenNet-IP wireless node to be upgraded
with minimal disruption to node operation and without physical intervention by the
user/installer (e.g. no need for a cabled connection to the node).

The replacement software is distributed from an OND server, which is a device located
in the LAN/WAN domain. The image is distributed to the WPAN via the Co-ordinator,
which is also termed a server. The wireless Routers are able to propogate the image
through the network to the relevant nodes. This is illustrated in the figure below.

Note that the JN5164 device can only act as an intermediary in the OND process and
cannot update its own application image via OND - for details, refer to Section 10.6.

Figure 16: OND Routing

Server

Router

End Device End Device

Border-Router/Co-ordinator

End Device

Download is via normal network
routes, e.g. via Router to End Device

IP Connection

OND server
providing
upgrade
208 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
10.4 Image Storage

An application image is stored in the Non-Volatile Memory (NVM) associated with the
JN51xx wireless microcontroller, normally Flash memory.

In the case of a JN516x device, the application is run directly from internal NVM but in
the case of a JN514x device, the application is loaded from external NVM into on-chip
RAM (from where it is run) during the boot process. A node with the capability to
participate in OND can store more than one application image in NVM - the currently
running image and one or more additional images, as follows:

 A newer replacement for the current image in one of the following states:

 Not yet completely received

 Complete but not verified

 Complete and verified but not yet running

 An image intended for a different device type (may be partial or complete)

Space is reserved in NVM for each image. A whole number of NVM sectors are
reserved for an image, even if the image will not completely fill this space. On the
JN5142-J01 device, the number of NVM sectors available for image storage is
configurable (see Section 10.8.1).

Example storage in Flash memory is shown in Figure 17 for JN516x and in Figure 18
for JN514x.

Note: For the JN514x microcontrollers, this NVM is an
external Flash memory device. For the JN516x
microcontrollers, their internal Flash memory can be
used.

Figure 17: Example Image Storage in JN516x Flash Memory

Current Image

New Image

8x32K Flash Memory

Sector 0

Sector 1
Sector 2
Sector 3

JN5168

Sector 4

Sector 5
Sector 6
Sector 7

Current Image

5x32K Flash Memory

Sector 0

Sector 1
Sector 2
Sector 3

JN5164

Sector 4 User Data
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 209

Chapter 10
Over-Network Download (OND)

10.5 Multi-Image Bootloader

During the boot process at JN51xx start-up, the bootloader provided in on-chip ROM
searches through NVM, looking at the start of each sector for the image header that
identifies the current application image. If OND is implemented, the bootloader may
need to choose between multiple images stored in NVM, requiring a multi-image
bootloader. On finding/choosing an image:

 JN514x: Bootloader copies the image from external NVM into on-chip RAM

 JN516x: Bootloader may re-map the image to other NVM sectors

For the JN514x-J01 and JN516x devices, an application image can be stored in any
(reserved) sector of NVM.

10.6 OND Restrictions for JN5164

On the JN5164 device, it is not possible to update the application image using OND.
However, this device is still able to forward OND requests and blocks for other nodes,
and to report its own OND image version information (for example via the OND MIB).
Therefore, if a JN5164 device is to be deployed in a node of a network in which OND
is used by other nodes, OND should be also enabled on the JN5164 device.

On a JN5164 device for which OND is enabled, the OND MIB (see Section 10.8)
contains sensible read values but should not be written to. The image list will have just
one entry, the current application image.

Figure 18: Example Image Storage in JN514x Flash Memory

User Data

Current Image

New Image

8x64K Flash Memory

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

User Data

Current Image

New Image

8x64KB Flash Memory

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

JN5148-J01 JN5142-J01

User Data

Current Image

New Image

4x32K Flash Memory

Sector 0

Sector 1
Sector 2
Sector 3

JN5142-J01
210 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
10.7 OND Process

This section outlines the process of performing an OND.

Note that the JN5164 device can only act as an intermediary in the OND process and
cannot update its own application image via OND - for details, refer to Section 10.6.

10.7.1 Initiating an OND

The OND process is normally a broadcast initiated by an OND server in the LAN/WAN
domain, which can be any one of:

 LAN/WAN device: This device may be a PC, tablet or mobile phone with an IP
connection to the target WPAN.

 Border-Router: The OND can be initiated using a command line or web
interface on the Border-Router, as provided in the Linksys router supplied in the
JenNet-IP EK040 and JN516x-EK001 Evaluation Kits.

The Co-ordinator of the WPAN acts as the origin of the OND within the network and
is therefore also referred to as a server.

There can be more than one OND server for a JenNet-IP system. The Co-ordinator
can hold a list of the other servers (in the LAN/WAN domain) for the system. Then, if
the Co-ordinator cannot fulfil an OND request from within the WPAN, it may pass on
the request to another server in its list.

10.7.2 Downloading an Image

A wireless Router will receive an image, store it in NVM and pass it on within the
WPAN. However, this Router may pass on blocks of the image before it has received
all blocks of the image. This image download is illustrated below in Figure 19.

Figure 19: Downloading an OND Image

Server

New image
for other nodes

Router

New image
for other nodes

Target Node

New image

Current image

Target Node

New image

Current image
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 211

Chapter 10
Over-Network Download (OND)

An OND image arrives over-the-air at a wireless node one block at a time, but the
blocks may not arrive in sequential order. The process of receiving image blocks is
described below (also refer to Section 10.7.3 which provides additional infomation on
the recovery of missing or erroneous blocks).

1. The node waits for a block to arrive. A timeout is applied to the arrival of a new
block. Once this amount of time has passed since receiving the previous
block, the node will request the block from the server (note that for a
broadcast OND, the timeout is extended by a factor of five).

2. A block arrives in an IEEE 802.15.4 frame, which is verified using a 16-bit
check sequence to detect errors introduced during transmission. If the frame
is erroneous then it is rejected.

3. A successfully received block is written to NVM and then read back from
NVM. If the read block does not match the received block, this indicates an
NVM write-error. Since Flash memory can only be erased by sector, it is not
possible to simply re-write the erroneous block - the whole image is discarded
and the image is requested again from the server.

4. The last block of an image contains a checksum on the application binary that
was calculated when the image was created. When all blocks of an image
have been received and written to NVM, another checksum is calculated on
the entire image, including the checksum included in the image. The final
checksum should be 0 - if it is non-zero, the whole image is erased from NVM
and the image is requested again from the server.

5. Once the new image has been successfully verified, its header is updated to
indicate that the image is valid (and that the current image can be erased from
NVM and the device reset). The device may automatically reset and run the
new image or may wait until instructed to reset, depending on the ‘auto-reset’
field of the image footer (see Section 10.10.2).

10.7.3 Recovering Image Blocks

As stated in Section 10.7.2, the target node of an OND may need to request individual
blocks that failed to arrive or were corrupted during transmission, or request the whole
image again if an NVM write-error occurred.

Note the following:

 The image in NVM has a footer containing a block-map which is updated on the
target node to keep track of which blocks have been successfully received
during the download.

 If a block needs to be requested, the request will not be passed all the way to
the OND server if a Router or the Co-ordinator (along the download path) can
provide the relevant block.

 If a node does not receive a response to a block request within the timeout
period, it will slightly increase the delay before sending another request.
Eventually, after a large number of unanswered requests, the node will
abandon the OND and erase the image in NVM.
212 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
10.8 Incorporating OND into an Application

This section describes how to integrate the OND facility into a JenNet-IP application
for a wireless node (building the application is described in Section 10.10).

10.8.1 Configuration in Application

OND can be configured within the application on a wireless node by means of the
three JenNet-IP stack parameters (see Section 9.3) listed and described below.

10.8.2 Initialisation in Application

In order to implement OND in a JenNet-IP system, OND initialisation code must be
added to the applications that run on the server node and other nodes of the WPAN.
These code additions are described below. The referenced functions are detailed in
Section 10.9.

In all JN516x-based nodes, the application must initialise the JenOS Persistent Data
Manager (PDM) before initialising OND (since OND uses PDM on JN516x devices).

Server Node (Co-ordinator)

The Co-ordinator of a WPAN acts as an OND server (and is usually located within the
Border-Router at the interface of the WPAN and the LAN/WAN domain). To enable
this node as a server, the function eOND_SrvInit() must be called once the JenNet-
IP stack has been initialised and the stack event E_STACK_STARTED has occurred.

Other Nodes

In the applications that run on the non-server nodes, the function eOND_DevInit()
must be called once the JenNet-IP stack has been initialised and the stack event
E_STACK_JOINED has occurred. On the JN5142-J01 device, this function allocates

Parameter Type Values Description

u8OND_SectorsAvailable uint8 Default: 4
Max: 255

Number of NVM sectors available for the
storage of application images. This parame-
ter is only applicable to JN5142-J01 - for
other chips, the value is fixed: 4 for
JN5148-J01 and JN5164, 8 for JN5168

u8OND_SectorSize uint8 Default: 64
Max: 255

Size, in KBytes, of each NVM sector (this
value is dictated by the NVM device used).
This parameter is only applicable to
JN5142-J01 - for other chips, the value is
fixed: 64 for JN5148-J01, 32 for JN516x

u8OND_SrvMaxServers uint8 Default: 2
Max: 16

Number of entries in the list of OND servers
held on the Co-ordinator.

Table 9: OND-related Stack Parameters
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 213

Chapter 10
Over-Network Download (OND)

a 1-Kbyte memory buffer from the heap for OND use. The actual number of bytes of
stack required for OND on the different chips are:

 JN5142-J01: 156 x number of images

 JN5148-J01: 1120

 JN5164-001: 0

 JN5168-001: 560

10.8.3 Performing a Download

An application upgrade can be pushed from an OND server or pulled from a wireless
node, as described below.

Pushed from Server

The download of a new application image can be initiated on an OND server in the
LAN/WAN domain, which will lead to a broadcast from the Co-ordinator in the WPAN.
A receiving node that has been initialised for OND will check the first (or any) block of
the image to determine whether the new image is relevant to itself - the node does this
using the Device ID, chipset and image revision from the block. If the image is
relevant, the node saves all blocks of the image to local NVM. If the node is a Router,
it will pass the image blocks to its children (irrespective of whether it saves the image
for itself). All of this is automatic, requiring no application involvement. If the auto-reset
option has been enabled in the image at build-time (see Section 10.10.2) then once
the download has completed, the JN51xx device will be automatically reset and the
new image will be run on boot-up.

Pulled from Node

The application running on a node can request a specific application image from an
OND server. This request is configured and initiated by accessing the MIB variables
of the OND module which is provided with JenNet-IP (and fully detailed in Appendix
F.3.4). Table 10 below lists the OND MIB variables and describes the effects of
reading/writing from/to these variables.

In order to request an image from an OND server, the current application must:

1. If required, write the Device ID for the new image to the DeviceID variable
(this step is only required if the Device ID of the node is to be changed).

2. Write the revision of the new image to the Revision variable.

3. Request the new image by writing any value to the Download variable.

4. Periodically read the Images variable to check whether the download has
completed. A table will be returned containing an entry for every image in
NVM. One entry will have a Status field value of ‘2’ (Loading) if the download

Note: An example of this type of OND which uses the
JenNet-IP Browser with the JenNet-IP EK040
Evaluation Kit is described in Appendix I.
214 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
is in progress or ‘3’ (Valid) if the download has successfully completed (see
Appendix F.3.4).

5. If the new image is to be run, write the index of the relevant entry from the
Images table (see previous step) to the LoadImage variable in order to
transfer the new image to RAM and switch execution to the new image. This
step is not needed for a compatible image in which the auto-reset option has
been set at build-time (see Section 10.10.2).

A JN5164 device with OND enabled will have sensible read values for the OND MIB variables
but the OND MIB should not be written to - see Section 10.6.

Variable Read Action Write Action

Images Returns list of all images on the node
(uses the undocumented function
eOND_DevGetImage())

-

DeviceID Returns the Device ID for the current
image in use by the local node

Sets the Device ID for the next image to be
downloaded (see Caution below)

ChipSet Returns the chipset for the current
image in use by the local node

Sets the chipset for the next image to be
downloaded (see Caution below)

Revision Returns the revision of the current
image in use by the local node

Sets the revision for the next image to be
downloaded (see Caution below)

Download - Starts a download of an image with the
image identifiers currently set in the Devi-
ceID, ChipSet and Revision MIB variables.
(uses the undocumented function
eOND_DevCommenceUpdate() with
these values and with the server address
set to all zeros (which, in JenNet, refers to
the Co-ordinator))

LoadImage Returns the image identification
number of the current image

Switches to the image with the supplied
image index number obtained by reading
Images (uses the undocumented function
eOND_DevSwitchToImage()).

Table 10: OND MIB Variables

Caution: Reading any variable of the OND MIB, except
Images, will reset the values of DeviceID, ChipSet and
Revision to those of the application image that is
currently running on the node.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 215

Chapter 10
Over-Network Download (OND)

10.9 OND Initialisation Functions

This section details the C functions that are used to initialise the OND facility in an
application. Use of these functions is described in Section 10.8.2.

The OND initialisation functions are listed below, along with their page references:

Function Page

eOND_SrvInit 217

eOND_DevInit 218
216 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
eOND_SrvInit

Description

This function is used on an OND server node (the Co-ordinator) to initialise the OND
facility. The function reads NVM to determine which images or partial images are
currently stored (and expects to find at least the current application image for the
node). The number of the UDP port through which OND IPv6 traffic will pass must be
specified.

On JN516x devices, the JenOS Persistent Data Manager (PDM) must be initialised
before calling this function (since OND uses PDM on these devices).

Parameters

u16Port Number of UDP port to be used for IPv6 traffic (the default port
number for OND is 1874)

Returns

E_OND_OUT_OF_RANGE (unable to find valid NVM location of current image)

E_OND_INIT_ERROR (unable to initialise NVM access or configure UDP socket)

E_OND_SUCCESS (successful initialisation)

teOND_Result eOND_SrvInit(uint16 u16Port);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 217

Chapter 10
Over-Network Download (OND)

eOND_DevInit

Description

This function is used on a non-server node to initialise the OND facility. The function
reads NVM to determine which images or partial images are currently stored (and
expects to find at least the current application image for the node).

On the JN5142-J01 device, the function allocates a 1-Kbyte memory buffer from the
heap for OND use. The actual number of bytes of stack required for OND on the
different chips are:

 JN5142-J01: 156 x number of images

 JN5148-J01: 1120

 JN5164-001: 0

 JN5168-001: 560

On JN516x devices, the JenOS Persistent Data Manager (PDM) must be initialised
before calling this function (since OND uses PDM on these devices).

Parameters

None

Returns

E_OND_OUT_OF_RANGE (unable to find valid NVM location of current image)

E_OND_INIT_ERROR (unable to initialise NVM access)

E_OND_SUCCESS (successful initialisation)

teOND_Result eOND_DevInit(void);
218 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
10.10 Building an Application with OND

This section describes how to build an application that incorporates OND. The final
output is the application image to be loaded into NVM of the target device.

10.10.1 Makefile Modifications

There are not normally any specific modifications required to the makefile for OND.

However, if using a legacy makefile for JN5148-J01, ensure that the following line is
NOT present:

JENNIC_BOOT = SSBL

10.10.2 Post-Build Modifications (using Checksum Tool)

Once an application has been built with the makefile described in Section 10.10, the
resulting binary file can be modified in the following ways to produce the final
application image:

 Checksum: A checksum is added to the final block in the image, so that the
OND engine can check that the image has been received completely (this
modification is mandatory)

 Image Identifiers: These are placed in the space where the MAC address
(JN514x) or encryption vector (JN516x) would normally be and are read by the
Border-Router when it is given an image to pass into the network (mandatory if
intending to distribute the image using the JenNet-IP Browser)

 Footer (JN516x only): A footer can be added to the end of the image,
containing the image identifiers. Also see Footer below

 Footer (JN514x only): A footer can be added to the end of the final NVM
sector used to store the image. It should not be used for an image to be
downloaded via OND as it makes the image unnecessarily large, and in this
case OND creates and maintains the footer itself. Also see Footer below

The OND Checksum Tool can be used to modify a binary file in any of the above ways
to produce the final OND image. This tool is supplied with the JenNet-IP software and
is described in Section 10.10.3.

Footer

The footer is used for an image that is to be loaded into NVM using the JN51xx Flash
Programmer and not distributed via OND. However, it is used by the OND initialisation
code to obtain the image identifiers and characteristics of the current running image.
Without this, if an image is loaded using the JN51xx Flash Programmer, the OND code
would not know the image identifiers and would not be able to automatically update
itself via OND. On the JN516x device, the footer is positioned at the end of the image
itself so that it is feasible to include the footer in all images, regardless of whether they
are to be programmed from the JN51xx Flash Programmer or via OND.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 219

Chapter 10
Over-Network Download (OND)

10.10.3 OND Checksum Tool

This tool is accessed from the command line using the following command:

OND_Checksum (flags) <infile> <outfile>

The flags are are listed and described in Table 11 below, where

M: Mandatory

N: Not required

O: Optional

Flag Purpose

JN
5

14
2

-J
01

JN
5

14
8

-J
01

JN
5

16
x

-r Indicates that a device receiving this image should
reset itself as soon as it has completed downloading
the image. Requires -f or -6 flag to be used too.

O O O

-t <timeout> Time-base for transmission of blocks, in units of
1/62500 second. The recommended values are
1 second for a small network (less than 50 nodes),
3 seconds for a medium network (50 to 150 nodes),
5 seconds for a large network (more than 150 nodes).
Value is used by the receiving nodes to determine the
rate at which they should request blocks. Requires -f
or -6 flag to be used too.

O O O

-v <device ID> <chipset>
<revision>

Use the specified image identity values in the footer or
in the IEEE/MAC address area of the image. Required
when -f, -m or -6 flag is used.

O O M

-m Puts the image identity in the IEEE/MAC address area
of the image. Requires -v flag to be used too.
Optional, but required if intending to distribute the
image using the JenNet-IP Browser.

O O O

-6 Specifies that image is for a JN516x device and adds
footer to end of image. By default, a 1-second timeout
is set and auto-reset is disabled. Requires -v flag to
be used too, and can be used with -r and -t to set
different values for timeout and reset.

N N M

-f Adds a footer to the end of the final NVM sector for the
image. By default, a 1-second timeout is set and auto-
reset is disabled. Requires -v flag to be used too, and
can be used with -r and -t to set different values for
timeout and reset. This option can be specified for the
JN516x device but has no effect.

O O N

Table 11: OND Checksum Flags
220 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Other flags (-s, -b, -p, -a) are available but are not useful during application
development, so are not described here.

Specified values can be decimal (no prefix) or hexadecimal (prefixed with "0x").

Examples of use are shown below. In all cases, it is assumed that the command is
issued from the Applications/<App name>/Build folder.

 When creating an image for the JN5148-J01 device, to be loaded using the
JN51xx Flash Programmer (and not distributed via OND):

../../../Tools/OND/Build/OND_Checksum -f -v <device ID> <chipset>
<revision> <original binary name> <new binary name>

 When creating an image for the JN5142-J01 device, to be loaded using the
JN51xx Flash Programmer (and not distributed via OND):

../../../Tools/OND/Build/OND_Checksum -i 32 -f -v <device ID>
<chipset> <revision> <original binary name> <new binary name>

 When creating an image for any JN514x device, to be distributed via OND:

../../../Tools/OND/Build/OND_Checksum -m -v <device ID> <chipset>
<revision> <original binary name> <new binary name>

 When creating an image for any JN516x device:

../../../Tools/OND/Build/OND_Checksum -6 -m -v <device ID>
<chipset> <revision> <original binary name> <new binary name>

-i <size> Specifies the total NVM space, in KBytes, needed for
the image - this is used to position the footer at the
end of the final NVM sector for the image (32 and 128
are sensible values). Only required on the JN5142-
J01 device, as the tool defaults to 128 which is the
correct value for the other devices

M O N

Flag Purpose

J
N

51
4

2-
J0

1

J
N

51
4

8-
J0

1

J
N

51
6

x

Table 11: OND Checksum Flags
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 221

Chapter 10
Over-Network Download (OND)

222 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
11. Standalone WPAN

A full JenNet-IP system comprises one or more WPANs, each with an IP connection
via a Border-Router (see Figure 5 on page 39). However, a WPAN can operate in
standalone mode without an IP connection. In this case, IP connectivity is provided as
an expansion option through the addition of a Border-Router (see Section 11.3).

A typical example of a standalone WPAN is a home lighting system consisting of a
remote control unit and a number of (controlled) lamps. Extending this system with the
addition of a Border-Router would allow the home lighting system to be controlled from
an IP-based device such as a PC, tablet or mobile phone.

11.1 Architecture and Operation

A standalone WPAN consists only of Routers and a pseudo-Co-ordinator. The
pseudo-Co-ordinator, normally a remote control unit, forms the network. The identity
and properties of the network are configured through this node, which acts as the
agent through which other nodes join the network (see Section 11.2). Unlike normal
Co-ordinators and Routers, the pseudo-Co-ordinator is able to sleep.

Once the network has formed, the pseudo-Co-ordinator can sleep and only wakes
when a button is pressed. As a remote control unit, it is then used to send control
commands to one or more target devices. A command is broadcast and all Routers
that are within radio range will rebroadcast it - the rebroadcasting continues as the
command propagates through the network until all Routers have received it. In this
way, the network has a mesh-like topology. A target device will recognise a command
that is for itself and act upon it. Note that the pseudo-Co-ordinator only sends
commands and does not receive them. Also note that pinging is disabled in this kind
of network - therefore, when there is no ‘user’ traffic, the network is silent.

Even without an IP connection, a standalone WPAN still employs IPv6 packets, by
transporting data between wireless nodes in compressed IPv6 packets embedded in
IEEE 802.15.4 frames. This provides the capability to extend the system into the LAN/
WAN domain (see Section 11.3).

11.2 WPAN Formation

The formation of a standalone WPAN requires:

 A remote control unit programmed as a JenNet-IP pseudo-Co-ordinator

 One or more target devices programmed as JenNet-IP Routers

Two situations are described below: a cold start (starting the network from scratch)
and a warm start (waking from sleep).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 223

Chapter 11
Standalone WPAN

Cold Start

When starting the network from scratch, the pseudo-Co-ordinator (remote control unit)
must be started first. The application that runs on this device must establish a JenNet-
IP network as described in Section 4.1.1 for a Co-ordinator. The target devices
(Routers) can then be started and the applications that run on these devices must
initialise themselves as Routers, again as described in Section 4.1.1.

Once a Router has joined the remote control unit, it does not need to remain a child of
this unit in order to be controlled. The pseudo-Co-ordinator (remote control unit) can
have a maximum number of children, determined by the JenNet Parameter
u8MaxChildren (see Section 9.2) which is set to 10 by default. Therefore, a child
can be discarded to ensure that sufficient child places are available to allow further
nodes to join the pseudo-Co-ordinator. The function vApi_DeleteChild() can be used
on the pseudo-Co-ordinator to break this parent-child relationship.

Warm Start

The pseudo-Co-ordinator (remote control unit) sleeps when not in use and is woken
by any button-press. In this case, the device re-starts as described in Section 4.1.2.
During sleep, memory is held and so the details of the network are preserved in the
device, allowing the device to resume its place in the network on waking.

11.3 IP Extension

A standalone WPAN can be extended into a full JenNet-IP system by adding an IP
connection, allowing the network to be controlled and monitored from an IP-based
device (such as a PC, tablet or mobile phone connected to the Internet). This
connection is added by introducing a Border-Router, which interfaces the WPAN to a
LAN, which may be connected to a WAN - for example, interfacing a wireless home
lighting system to the Internet connection in the home.

In this case, the Border-Router also becomes the WPAN Co-ordinator and the remote
control unit effectively becomes an End Device. Again, this device sleeps when not in
use and is woken by a button-press. The device is then used to send control
commands to one or more target devices within the WPAN by broadcasting to all
Routers within radio range - propagation of the command continues as described in
Section 11.1.

When a command is received from an IP-based device, the remote control unit is not
woken and does not play a role in relaying the command to the target device(s). In this
case, as the Co-ordinator, the Border-Router broadcasts the incoming command to
the Routers within radio range - propagation of the command continues as described
in Section 11.1.

Unlike in a standalone WPAN, the Router nodes in a WPAN with IP connection
implement the auto-ping mechanism described in Section 2.9.1.
224 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide

In extending a standalone system to a full JenNet-IP system, the new system can be
started in one of two ways:

 The new system can be started from scratch, which assumes that the previous
standalone system has been completely powered down. In this case, the
Border-Router/Co-ordinator must be started first in order to establish the
WPAN, as described in Section 4.1.1 for a Co-ordinator, after which the
Routers and End Device can be started in any order.

 The new system can be spawned from the running standalone system. In this
case, the Border-Router node first joins the network of the remote control unit
from which it obtains network parameter values such as PAN ID, radio channel
and network key. The Border-Router then restarts as a Co-ordinator in order to
create a WPAN with the same network parameters and takes over the
standalone network as a full JenNet-IP system.

Note: The remote control unit effectively acts as an End
Device in that it originates commands, has no routing
role and can sleep when not needed. The device does
not receive commands and therefore has no need to
poll its parent for messages. In addition, the device does
not ping its parent.

Note: A WPAN node in a full JenNet-IP system can be
programmed to switch to standalone mode if it loses
contact with its parent and then to leave standalone
mode if it regains contact with its parent.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 225

Chapter 11
Standalone WPAN

226 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Part IV:
Appendices
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 227

228 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
A. Notes on JenNet Initialisation

This appendix describes the use of certain JenNet parameters in the operation and
maintenance of a wireless network in a JenNet-IP system:

 Routing (Appendix A.1)

 Losing a parent node (Appendix A.2)

 Losing a child node (Appendix A.3)

 Auto-polling (Appendix A.4)

The JenNet parameters can be set in the functions vJIP_InitStack() and
vJIP_ConfigureNetwork(). These parameters are contained in structures that are
fully detailed in Chapter 9.

A.1 Routing

The Co-ordinator and Routers of a network can each play a role in routing messages
and, in JenNet-IP systems, their routing capability is enabled automatically.

A routing node contains both a Neighbour table and a Routing table (see Section
2.7.1). The Neighbour table is small, since a node can have an absolute maximum of
only 16 children. The Routing table, however, can potentially accommodate entries for
a very large number of descendant nodes and therefore take up significant memory
space. For this reason, the application is allowed some control over the Routing table,
in order to limit the amount of memory space occupied by the table.

The Routing table is represented in memory as an array of structures, where each
structure contains the routing information for one descendant node (these structures
are automatically filled in by the stack when the network is formed and are not the
concern of the application). Each array element contains 12 bytes. This array must be
declared in the application and configured using two JenNet parameters:

 u32RoutingTableEntries determines the number of elements in the array and
therefore the maximum number of descendant nodes (excluding immediate
children). This value should be set realistically to the maximum expected
number of nodes in the network (plus 10-20% to allow for movement of nodes),
so not to reserve more memory space than needed for the Routing table.

 *pvRoutingTableSpace is a pointer to the Routing table in memory - thus, the
array will start at this point in memory.

Note: If a node attempts to join a network and this
requires a new entry in a Routing or Neighbour table
which is already full, the join request will be ignored.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 229

Appendices
A.2 Losing a Parent Node (Orphaning)

A node must be able to determine if it has lost its parent and become an orphan. Once
orphaned, the node may then need to re-join the network.

A.2.1 Detecting Orphaning

There are two ways a child node can determine whether it has been orphaned:

 Lost packets

 Lost pings

These methods are described below.

Lost Packets

A node may decide that it has lost its parent when a certain number of consecutively
sent packets have been lost. In JenNet, this number is determined by the parameter
u8MaxFailedPkts. Each packet is sent four times (original attempt plus three retries)
before it is considered to be ‘failed’. Therefore, when a child loses its parent, the total
number of lost packets will be 4 x u8MaxFailedPkts. Since the node has now lost its
parent, the orphaned node will attempt to re-join the network (see Appendix A.2.2).

Lost Pings

In a quiet network with little traffic, Routers and End Devices generate pings to avoid
the loss of a parent (auto-pings are described in Section 2.9.1). If there is no other
traffic on the link:

 A Router will periodically ping its parent at an interval determined by the JenNet
parameter u16RouterPingPeriod (in units of 10 ms).

 An End Device will periodically ping its parent at an interval determined by the
JenNet parameter u8EndDevicePingInterval (expressed in terms of sleep
cycles). For example, if this interval is set to 4 and the sleep period is
2 seconds, the node will ping its parent every 8 seconds.

Given no other network traffic, the number of failed pings before the node decides that
it has lost its parent is determined by the JenNet parameter u8MaxFailedPkts (which
is set to 5, by default). Thus, in this case, the orphaned node will attempt to re-join the
network (see Appendix A.2.2) after a time given by u8MaxFailedPkts multiplied by the
ping interval.
230 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
A.2.2 Re-joining the Network

When a node considers its parent to be lost (see Appendix A.2.1), JenNet initiates a
stack reset and begins a search for a new parent. The application is notified with
E_STACK_RESET.

The recovery method depends on the node type, as follows:

 An orphaned Router will continuously scan for a new parent until a network is
joined. JenNet then sends an E_STACK_JOINED event to the application.

 An orphaned End Device will scan for a new parent. If the device is successful
in re-joining the network, JenNet sends an E_STACK_JOINED event to the
application. Otherwise, the device goes to sleep for a period determined by the
JenNet parameter u32EndDeviceScanSleep, then scans again, repeating the
scan/sleep cycle until the network has been successfully re-joined.

A.3 Losing a Child Node

A parent node must be able to determine whether its children are still active. The
detection methods for the loss of a child node are different for End Device and Router
children.

A.3.1 End Device Children

Two mechanisms are employed by a parent to determine whether an End Device child
has become inactive and should therefore be removed from its set of children:

 A timeout on communications coming from the End Device

 Restrictions on the locally buffered messages destined for the End Device

These are described in the sub-sections below.

Communication Timeout

For an End Device child, the parent implements a timeout period on communications
from the child. This timeout period, in units of 100 ms, is determined by the value of
the JenNet parameter u32EndDeviceActivityTimeout.

 If the parent does not receive a communication from the End Device child
within this timeout period, it considers the child to be lost and removes it from
the Neighbour table (this change will also be propagated up the tree to the
Routing tables of ascendant nodes).

 If the parent does receive a communication from the End Device child within
this timeout period, the timeout is reset and starts again.

Caution: In order to avoid being removed from the
network, an active End Device must ensure that both
the communication timeout and the buffered message
restrictions are not violated.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 231

Appendices
Note that data polling from the child does not count as communication for this purpose.

Automatic pings from an End Device to its parent can be used to prevent this timeout
mechanism from deducing that the child is lost when it is simply sending data
infrequently. A ping is generated on waking after a number of sleep cycles, where this
number is configured using u8EndDevicePingInterval. For this mechanism to work,
the End Device child must sleep/wake regularly enough for the time between pings not
to exceed the value of u32EndDeviceActivityTimeout, otherwise the parent will
assume the child is lost.

Buffered Message Restrictions

Data messages sent to an End Device are buffered by the node’s parent and collected
by the End Device through data polling. This allows messages that arrive while the
End Device is asleep to be retained and later collected when the End Device is awake.

Pending messages for an End Device are stored in buffers from the parent’s
application buffer pool and are passed to one of its 802.15.4 MAC buffers for collection
by the End Device child (the messages are fed through the MAC buffer one at a time).
However, the parent will not indefinitely store a message in the MAC buffer - once a
message has been in the MAC buffer for 8 seconds, the message is discarded and
considered to be a failed communication by the parent.

When the number of failed messages reaches the value of the JenNet parameter
u8MaxFailedPkts, the parent considers the End Device to be a lost child and will
remove this child from its Neighbour table (this change will also be propagated up the
tree to the Routing tables of ascendant nodes).

This mechanism has implications for End Devices that sleep for long periods and
which therefore cannot often poll for data. Such an End Device can cause routing
congestion in its parent and could be mistakenly removed from the network, because
its parent has buffered a sufficient number of ‘failed messages’ for the End Device
while it has been sleeping.

To prevent these situations, follow the recommendations below:

 Avoid sending messages to an End Device that is known to be sleeping,
particularly if the sleep duration is long (more than 7 seconds).

 Avoid sending messages to many End Devices at the same time.

 If an End Device periodically requests data from other nodes, ensure that it
frequently polls its parent for the responses (to clear the MAC buffer as quickly
as possible).

Note: An End Device that must stay awake for long
periods may need to regularly send data to its parent, to
avoid being considered lost by the parent.
232 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
A.3.2 Router Children

For a Router child, the parent counts the consecutive failed communications with the
child (unreturned 802.15.4 MAC acknowledgements) and considers the child to be lost
when this count exceeds the value of the JenNet parameter u8MaxFailedPkts. In this
case, the child is removed from the parent’s Neighbour table and all descendant of the
Router child are removed from the parent’s Routing table (these changes will also be
propagated up the tree to the Routing tables of ascendant nodes).

Automatic pings from a Router to its parent can be used to prevent the parent from
assuming the child is lost when it is simply sending data infrequently. Regular pings
will be generated by the Router child with a ping period configured through the JenNet
parameter u16RouterPingPeriod (on parent and child). The parent will consider the
Router child to be lost if it does not receive a ping or data from the child within the
period defined by the product:

u8MaxFailedPkts x u16RouterPingPeriod x 10 ms

A.4 Auto-polling

An End Device has the potential to sleep and may therefore not always be in a position
to receive data sent to it. For this reason, messages destined for an End Device are
buffered by its parent and the End Device must poll the parent for these messages.
The data polling mechanism is described in more detail in Section 4.7.

In JenNet, auto-polling is enabled on an End Device by default. Auto-polling is the
periodic polling of the parent, where the poll period is set using the JenNet parameter
u32EndDevicePollPeriod. By default, this is set to 5 seconds.

Provided that auto-polling has not been disabled, an End Device will automatically poll
its parent on waking from sleep, irrespective of the poll period set. This polling is in
addition to the configured auto-polling. Thus, if you set the sleep period in
vJIP_Sleep() to be shorter than the poll period defined in u32EndDevicePollPeriod,
the End Device will poll the parent more often than configured through this parameter.

Note 1: Auto-polling can also be disabled through
u32EndDevicePollPeriod (by setting it to zero). If auto-
polling is disabled, the End Device can explicitly poll the
parent, when required, using the manual polling function
eJIP_Poll().

Note 2: An auto-poll may not retrieve all the pending
data for an End Device. Therefore, even when auto-
polling is enabled, the manual polling function
eJIP_Poll() should be called (once) following each auto-
poll to ensure that any remaining data is collected.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 233

Appendices
B. Handling ICMP Messages

ICMP (Internet Control Message Protocol) is introduced in Section 3.2.

Many ICMP messages are handled by the JenNet-IP stack. For example, if a remote
device sends an ICMP ping message to a JenNet-IP node, the response to this
message is automatically built and sent by the stack.

However, certain ICMP messages are passed to the application layer. For example,
the ICMP ‘destination unreachable’ message is generated by a remote device when it
cannot find the destination for a packet. When this ICMP message arrives back at the
local node, the stack passes the message to the application using the callback
function v6LP_DataEvent() with the following parameter values:

 iSocket is set to the special ICMP socket identity SIXLP_ERROR_SOCKET,
defined in the header file 6lp.h

 eEvent is set to E_6LP_ICMP_MESSAGE

The ICMP message can be read with the i6LP_RecvFrom() function. The iSocket
parameter in this function is passed the value SIXLP_ERROR_SOCKET from the
same parameter of v6LP_DataEvent(). The buffer (pointed to by the parameter
*pu8RxData) returned by i6LP_RecvFrom() contains the full ICMP message,
including the ICMP header.

The ICMP header contains four bytes:

 The first byte is the type of the message

 The second byte is a code that provides type-specific information

 The third and fourth bytes together form a 16-bit checksum

There is normally additional type-specific information following the ICMP header.

The most common ICMP types of interest to an application are listed and described in
the table below:

Type ICMPv6 Error Messages Description

1 Destination Unreachable Generated by a Router when it cannot find a route to the
given IP address. Also generated by an IP host when a
packet refers to a UDP port that has no open socket on the
host.

2 Packet Too Big Generated by a Router when the outgoing link has an MTU
that is smaller than the packet. This is unlikely to happen for
6LoWPAN packets since the maximum MTU size in
6LoWPAN is 1280 bytes, which is the minimum MTU size that
is permissible for an IPv6 link.

3 Time Exceeded The packet has exceeded the hop limit or a fragment of the
packet has taken longer to arrive than the fragment timeout
on the remote host.

4 Parameter Problem Caused by an incorrect IP header.

Table 12: Common ICMPv6 Error Messages
234 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The codes (second byte of ICMP header) for the above ICMPv6 error messages are
detailed in the table below.

Type ICMPv6 Error Message Codes

1

Destination Unreachable
0 - No route to destination
1 - Communication with destination administratively prohibited
2 - Beyond scope of source address
3 - Address unreachable
4 - Port unreachable
5 - Source address failed ingress/egress policy
6 - Reject route to destination

2 Packet Too Big
0 (Only one code)

3

Time Exceeded
0 - Hop limit exceeded in transit
1 - Fragment reassembly time exceeded

4

Parameter Problem
0 - Erroneous header field encountered
1 - Unrecognised Next Header type encountered
2 - Unrecognised IPv6 option encountered

Table 13: ICMPv6 Error Message Codes

Note: Details of the ICMPv6 error messages are
provided in RFC 4443 available from the IETF
(www.ietf.org).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 235

Appendices
C. Identifiers

This appendix described various identifiers used in JenNet-IP:

 Device ID - see Appendix C.1

 Device Type ID - see Appendix C.2

 MIB ID - see Appendix C.3

Network Application ID is described separately in Appendix D.

C.1 Device ID

The nodes of a WPAN in a JenNet-IP system are categorised according to their main
functionality (as distinct from their networking role), such as a type of lamp. Each node
has a 32-bit Device ID which identifies the kind of device it is. All nodes with the same
Device ID have the same set of MIBs and MIB variables.

The Device ID is made up from two components:

 Manufacturer ID (16 bits)

 Product ID (16 bits)

Manufacturer ID

The Manufacturer ID is unique to the device manufacturer and is allocated by NXP -
for NXP itself, this ID is 0x801. While this is a 16-bit value, the most siginificant bit is
not part of the ID and is used to indicate whether the remaining 15 bits contain a valid
Manufacturer ID - if this bit is set to ‘0’, the Manufacturer ID and Product ID are not
valid values, and these fields can be used for other information.

During device development, it may be appropriate to use a general Manufacturer ID.
The value 0x0001 should be used for this purpose.

Product ID

Device manufacturers are free to define the Product IDs of their devices.

Figure 20: Device ID Format

Note: Device IDs are defined in the application
makefile. For examples, refer to the Application Note
JenNet-IP Smart Home (JN-AN-1162).

Manufacturer ID Product ID

16 bits 16 bits

Device ID

0151631
236 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
C.2 Device Type ID

The Device Type ID is a 16-bit value indicating the role of the device in the JenNet-IP
system - for example, 0x0001 represents a Border-Router.

There are two kinds of Device Type ID:

 Standard: The standard Device Type IDs are specified by NXP. The leading bit
of a standard Device Type ID is ‘0’. A device of a standard type contains a set
of standard MIBs (see MIB ID in Appendix C.3).

 Manufacturer: A manufacturer Device Type ID is specified by a manufacturer.
The leading bit of a manufacturer Device Type ID is ‘1’. Since the same
manufacturer Device Type ID may be used by multiple manufacturers, it is only
meaningful when used in conjunction with the Manufacturer ID
(see Appendix C.1).

C.3 MIB ID

The MIB ID is a 32-bit value identifying a particular Management Information Base
(MIB) containing a particular set of MIB variables.

There are two kinds of MIB ID:

 Standard: The standard MIB IDs and the MIB contents are defined by NXP.
The upper 16 bits of a standard MIB ID are 0xFFFF and the lower 16 bits
identify the purpose of the MIB itself. These MIBs are intended for
manufacturers who are designing products that will be interoperable with other
JenNet-IP products (possibly from other manufacturers).

 Manufacturer: A manufacturer MIB ID and the MIB contents are defined by a
manufacturer. The upper 16 bits of a manufacturer MIB ID contain the
Manufacturer ID (see Appendix C.1) and the lower 16 bits identify the purpose
of the MIB itself. A manufacturer-defined MIB is used when there is no standard
MIB available to fulfil the required purpose.

Note: Device Type IDs are defined in the application
makefile. For examples, refer to the Application Note
JenNet-IP Smart Home (JN-AN-1162).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 237

Appendices
D. Network Application ID

This appendix describes a method by which a JenNet-IP wireless network application
can implement its own network identifier.

The JenNet-IP stack implements network identification by means of a 16-bit PAN ID,
described in Section 2.5. A PAN ID can be pre-set on the network Co-ordinator or can
be chosen by the Co-ordinator at start-up (such that the chosen value does not clash
with the PAN ID of any other networks operating in the vicinity).

The applications that run on the nodes of a JenNet-IP system can also implement a
‘Network Application ID’ to ensure that new nodes join a network that is running the
correct application. The Network Application ID is user data and can therefore be
defined by the application developer - it would typically be a 32-bit value. If it is
implemented, all product components (to be used in a JenNet-IP system) need to be
programmed with the same Network Application ID value. To avoid clashes between
different products, it should be a random value.

The Network Application ID is useful in the following stages of the node join process:

 Channel Scan: The Network Application ID can be included as user data in
beacons that are transmitted by Routers. A joining node which receives these
beacons during a channel scan can then choose to join a Router which is
transmitting the appropriate Network Application ID. The implementation of this
mechanism is described in Appendix D.1.

 Route Establishment: The Network Application ID can be included as user
data in the Establish Route message that is sent up to the Co-ordinator by a
joining node. Any intermediate Router that receives the message can then
reject the joining node based on the value of the Network Application ID. The
implementation of this mechanism is described in Appendix D.2.

If required, the Network Application ID can be implemented in an application using
certain JenNet and JenNet-IP functions (both sets are included in JenNet-IP). These
functions are described in Appendix D.3.

D.1 Channel Scan

The Network Application ID can be used in a JenNet-IP WPAN to ensure that a node
joins a network that is running the appropriate application. During the channel scan of
the join process (see Section 2.8), a joining node transmits a beacon request in each
relevant channel and waits (up to 138.24 ms) for beacons from potential parents.

 A responding Router can include a Network Application ID as user data in its
beacons. This beacon data can be pre-set by the application on the Router
using the JenNet function vApi_SetUserBeaconBits().

 If the joining node is to look for beacons containing a certain Network
Application ID, this analysis must be incorporated in the user-defined callback
function that is invoked when a beacon is received - this callback function can
be registered using the JenNet function vApi_RegBeaconNotifyCallback().

The above functions are described in Appendix D.3.
238 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
D.2 Route Establishment

During the node join process (Section 2.8), the network can accept or reject the joining
node on the basis of the Network Application ID included as user data in an Establish
Route message from the node.

 The application on the joining node can use the JenNet-IP function
v_6LP_SetUserData() to pre-set the relevant Network Application ID as user
data for inclusion in Establish Route messages. As part of the join process, this
message is sent up to the Co-ordinator of the desired network via any
intermediate Routers.

 Before entering the joining node into a Routing table, a Router that receives an
Establish Route message can check the embedded Network Application ID.
This analysis must be incorporated in the user-defined callback function that is
invoked when an Establish Route message is received - this callback function
can be registered using the JenNet-IP function v_6LP_SetNwkCallback().

The above functions are described in Appendix D.3.

D.3 Functions

This section contains descriptions of the JenNet and JenNet-IP functions (and
relevant callback functions) that support the passing of user data during the scanning
and route establishment processes. These functions can be used by an application to
implement a Network Application ID, as described in the preceding sections.

The relevant functions are listed below, along with their page references:

Function Page

vApi_SetUserBeaconBits 240

vApi_RegBeaconNotifyCallback 241

v_6LP_SetUserData 242

v_6LP_SetNwkCallback 243
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 239

Appendices
vApi_SetUserBeaconBits

Description

This JenNet function can be used to set the user data which is to be included in
beacons transmitted by a Router or the Co-ordinator. This data could be used to
represent a Network Application ID.

This beacon data is formatted as a 6-byte array. The function must provide a pointer
to the first element of this array. The same data is carried in all beacons.

Parameters

pu8Bits Pointer to the first byte of the 6-byte array to be used as the
user data in the beacons

Returns

None

void vApi_SetUserBeaconBits(uint8 *pu8Bits);

Note: Since the user data carried in a beacon cannot exceed
48 bits, this is the upper limit on the size of the Network
Application ID (when the user data is used for this purpose).
240 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vApi_RegBeaconNotifyCallback

Description

This JenNet function can be used to register a user-defined callback function that will
be invoked when a beacon is received by the local node when it is attempting to join
a network. The callback function MibNwkConfig_bBeaconNotifyCallback() is
described below.

Parameters

prCallback Pointer to callback function to be used to process beacons

Returns

None

MibNwkConfig_bBeaconNotifyCallback()

Description

This user-defined callback function is invoked when a beacon is received by a node that is
attempting to join a network. The function must process the beacon, including the extraction
of any user data contained in the beacon. This data could, for example, be the Network
Application ID of the network from which the beacon comes.

The function returns a Boolean to indicate whether the beacon comes from a network Router
which should be shortlisted for subsequent joining - for example, the Router may only be of
interest if the beacon contains a certain Network Application ID (as user data).

This callback function is registered using the function vApi_RegBeaconNotifyCallback(),
described above.

Parameters

psBeaconInfo Pointer to first byte of 6-byte array of user data extracted from
beacon

u16ProtocolVersion Version of protocol used in beacon

Returns

TRUE if source Router to be shortlisted, FALSE if beacon to be discarded

void vApi_RegBeaconNotifyCallback(
trBeaconNotifyCallback prCallback);

bool_t MibNwkConfig_bBeaconNotifyCallback(
tsScanElement *psBeaconInfo, uint16 u16ProtocolVersion);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 241

Appendices
v_6LP_SetUserData

Description

This JenNet-IP function can be used to set the user data which is to be included in
the Establish Route message sent up to the Co-ordinator when the local node is
attempting to join a network. This data could be used to represent a Network
Application ID. The maximum data length is 16 bytes.

Parameters

u8DataLength Number of bytes of user data (maximum of 16)

pu8Data Pointer to first byte of user data

Returns

None

void v_6LP_SetUserData(uint8 u8DataLength, uint8 *pu8Data);
242 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
v_6LP_SetNwkCallback

Description

This JenNet-IP function can be used to register a user-defined callback function that
will be invoked when an Establish Route message is received by the local (Router)
node. The callback function vHandleNwkCallback() is described below.

Parameters

prCallback Pointer to callback function to be used to process Establish
Route message

Returns

None

vHandleNwkCallback()

Description

This user-defined callback function is invoked when an Establish Route message is received
from a node that is attempting to join the network. The function must process the message,
including the extraction of any user data contained in the message. This data could, for
example, be the Network Application ID that is programmed into the node from which the
message comes.

The function returns a Boolean to indicate whether the joining node should be entered into the
local Routing table - for example, the joining node may only be accepted if the message
contains a Network Application ID (as user data) which matches that of the network.

This callback function is registered using the function v_6LP_SetNwkCallback(), described
above.

Parameters

psAddr Pointer to structure (see Section 8.1.3) containing the IEEE/MAC
address of the node from which the Establish Route message
originates

u8DataLength Number of bytes of user data in message (maximum of 16)

pu8Data Pointer to first byte of user data extracted from message

Returns

TRUE if joining node to be entered in Routing table, FALSE if request to be discarded

void v_6LP_SetNwkCallback(tprNwkCallback prCallback);

bool_t vHandleNwkCallback(MAC_ExtAddr_s *psAddr,
uint8 u8DataLength,
uint8 *pu8Data);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 243

Appendices
E. JenNet-IP Data Packet Format

This appendix outlines the format of data packets in a WPAN of a JenNet-IP system.
The data is contained in a series of embedded packets/frames, as described below
from the top down.

IEEE 802.15.4 MAC Frame

Data is transported between the nodes of a JenNet-IP WPAN using the IEEE 802.15.4
wireless network protocol. The data is embedded in an IEEE 802.15.4 MAC frame,
which has the basic format indicated in Figure 21 below.

The MAC header and payload are each of variable length but typically the header is
21 bytes and the payload is 64 bytes in size (e.g. for a data-to-peer frame). The
payload contains a JenNet frame (see below).

JenNet Frame

The MAC payload (above) contains a JenNet frame, which has the basic format
indicated in Figure 22 below.

The JenNet header and payload are each of variable length but typically the header is
19 bytes and the payload is 45 bytes in size (e.g. for a data-to-peer frame, in which
the header contains the source address for the frame). The payload contains an IPv6
packet (see below).

Figure 21: IEEE 802.15.4 MAC Frame

Figure 22: JenNet Frame

MAC Header
(X bytes)

MAC Payload containing JenNet frame
(Y bytes)

MAC Footer
(2 bytes)

Up to 127 bytes

JenNet Header
(X bytes)

JenNet Payload containing IPv6 packet
(Y bytes)

Contained in MAC payload
244 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
IPv6 Packet

The JenNet payload (above) contains an IPv6 packet, which has the basic format
indicated in Figure 23 below.

The 6LoWPAN/IP header and IPv6 payload are each of variable length but typically
the header is 28 bytes and the payload is 11 bytes in size (e.g. for a data-to-peer
frame). The UDP header is 6 bytes in size, compressed (see below).

The IPv6 packet is compressed (by the 6LoWPAN stack layer) for transportation in an
IEEE 802.15.4 MAC frame. The typical field sizes quoted above are for a compressed
IPv6 packet. When uncompressed, an IPv6 packet is typically 59 bytes in size, with
the UDP header occupying 8 bytes.

The payload contains a JIP command. The standard commands and their formats are
detailed in Appendix F.4.

Figure 23: IPv6 Packet

Tip: If a JenNet-IP system uses battery-powered End
Devices, frame/packet lengths should be minimised in
order to conserve power during packet transmission.

6LoWPAN/IP Header
(X bytes)

IPv6 Payload containing JIP command
(Y bytes)

UDP Header
(6 bytes)

Contained in JenNet payload
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 245

Appendices
F. JenNet-IP Principles

This appendix describes some of the low-level principles of JenNet-IP. This
information is provided for developers who wish to implement the JIP layer directly in
their software rather than through the supplied JenNet-IP APIs. For example,
developers may devise their own API to implement the functionality of the JIP layer.

F.1 Introduction

The JIP layer sits above the UDP layer in the JenNet-IP stack. Relevant JenNet-IP
concepts (including MIBs, variables and traps) are introduced in Section 3.4.

The layer enables management control of the JenNet-IP stack by allowing a remote
device to set and retrieve the values of MIB variables, as well as a set of application
variables.

F.1.1 JIP Modules

The JIP layer deals with software entities referred to as modules, where a module
relates to a particular functional area (e.g. environment monitoring) and includes a
MIB which contains the variables used to interface with the module. Standard (stack)
modules are included in JenNet-IP. Application-specific modules can also be defined.

Standard Modules

The standard modules included in JenNet-IP are:

 Node module

 JenNet module

 Groups module

 Over-Network Download (OND) module

 DeviceID module

The above modules are detailed in Appendix F.3.

Module ID

A module is identified by a name and a 32-bit module ID:

 Standard modules have module IDs in the range 0xFFFFFF00 to 0xFFFFFFFE

 Application-specific modules have module IDs in the range 0xFFFFFE00 to
0xFFFFFEFF

The value 0xFFFFFFFF is not used as a module ID.

Module Index

A module is also dynamically allocated an index by the stack. Module index numbers
are arbitrary and nothing should be inferred by their ordering. They start at zero and
are incremented by one for each module.
246 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.1.2 JIP Variables

The operation of JenNet-IP is based on accessing variables - for example, to write
configuration and control data, and read monitoring data. However, access to some
variables will result in actions beyond simple read/write operations - for example, a
write to change the RF channel variable will result in a physical change of the
operating channel.

A variable is a value that is visible to the JIP layer. An individual variable can be
disabled by the application if it does not currently hold a valid value or is not applicable
to the device.

Variable Types

A variable is one of the following types (and cannot change type):

 8-, 16-, 32- or 64-bit integer (signed or unsigned)

 Single- or double-precision float

 Variable-length string

 Blob

 Table of blobs

Variable Index

A variable is allocated an index within a module. These index numbers are arbitrary
and nothing should be inferred by their ordering. They start at zero and are
incremented by one for each variable.

F.1.3 JIP Commands

Access to a variable is performed as the result of a JIP command or request. A request
is issued by a JIP client to the JIP server which hosts the relevant variable(s). The
server may reply by sending a response to the requesting device. The standard
requests and responses are summarised in the table below.

Requests from JIP Client Responses from JIP Server

‘Get’ request ‘Get’ response

‘Get by ID’ request

‘Set’ request Set Response

‘Set by ID’ request

‘Query Modules’ request ‘Query Modules’ response

‘Query Variables’ request ‘Query Variables’ response

‘Trap’ request ‘Trap’ response

‘Untrap’ request

‘Trap’ notification

Table 14: Standard JIP Commands
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 247

Appendices
The above commands and the JIP command format are detailed in Appendix F.4.

Sockets and Ports

Requests and responses are passed between the JIP layer and UDP layer of the stack
via a UDP socket, which is a logical entity associated with an IPv6 address and
communications port on a device. The port number used for JIP layer communications
is defined by the application, and the default port number is 1873. UDP sockets are
introduced in Section 3.4.

Command Handles

Each request is assigned an 8-bit handle for identification purposes. The same handle
is included in the corresponding response, allowing the requesting device to match a
response with a request.

Multicasts

JenNet-IP allows a request to be multicast to multiple destinations using a pre-defined
IPv6 multicast address associated with a group of nodes. However, only the ‘Set’ and
‘Set by ID’ requests are supported by multicasting - all other requests are ignored.
Also, no response is generated for any request received on a multicast address, in
order to avoid flooding the network with responses (this includes the suppression of
trap notifications that would otherwise be generated by the resulting variable
changes).

F.2 Discovery

In order to communicate, a node must initially discover the other nodes that exist
within the network and the modules that are available on those nodes.

The nodes in the network can be discovered simply by retrieving the NetworkTable
variable from the network Co-ordinator. This variable is a table containing the Host
Interface ID and Device ID for all nodes currently in the network.

It is envisaged that a node may have access to an external database from which it can
retrieve the module IDs of the modules supported on a node with a given Device ID,
together with the list of variables for each module. Otherwise, the node will need to
discover the modules and variables that each node offers by querying the nodes
directly. To this end, the protocol allows for two types of query:

 Query Modules (see Appendix F.4.7 and Appendix F.4.8)

 Query Variables (see Appendix F.4.9 and Appendix F.4.10)

Note: In this case, it is worth considering caching the
variables by module ID and the module IDs by Device
ID, in order to speed up future queries and reduce
network traffic.
248 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The pseudocode fragment below illustrates the use of the above two query types to
discover the modules and variables on a remote node. It is important to note that since
each request will have only one response, it is necessary to make a series of requests
in order to discover all of the remote modules.

ModuleList moduleDiscovery(void)

{

 ModuleList moduleList;

 int i = 0;

 int firstModule = 0;

 int numModulesOutstanding = 0xFF;

 do

 {

 sendQueryModuleRequest(firstModule,

 numModulesOutstanding);

 QueryModuleResponse moduleResponse = waitForQueryModuleResponse();

 moduleList.add(moduleResponse);

 firstModule = moduleList.count;

 numModulesOutstanding = moduleResponse.numModulesOutstanding;

 }

 while(numModulesOutstanding != 0)

 for(i = 0; i < moduleList.count; i++)

 {

 int firstVariable = 0;

 int numVariablesOutstanding = 0xFF;

 VariableList variableList = moduleList[i].variableList;

 do

 {

 sendQueryVariableRequest(i,

 firstVariable,

 numVariablesOutstanding);

 QueryVariableResponse variableResponse =

 waitForQueryVariableResponse();

 variableList.add(variableResponse);

 firstVariable = variableList.count;

 numVariablesOutstanding =

 variableResponse.numVariablesOutstanding;

 }

 while(numVariablesOutstanding != 0)

 }

 return moduleList;

}

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 249

Appendices
F.3 Standard Modules

Five standard modules are incorporated into JenNet-IP that are used by the stack.
They are as follows:

The above modules are detailed in the sub-sections below.

F.3.1 Node Module

The Node module has a module ID of 0xFFFFFF00 and contains certain information
about the local node. The MIB variables for this module are detailed below.

Module Name Module ID Description

Node 0xFFFFFF00 Contains basic information about the host node

JenNet 0xFFFFFF01 Contains information about the nature and contents of the
host network

Groups 0xFFFFFF02 Contains information about the multicast groups to which
the host node belongs

OND 0xFFFFFF03 Contains information on the OND (Over-Network Down-
load) images on the host node

DeviceID 0xFFFFFF04 Contains the Device ID of the host node and indicates the
device types that the node can implement

Table 15: Standard (Stack) Modules

Index Variable Name Type Access Description

0 MacAddr uint64 Const 64-bit IEEE/MAC address of node

1 DescriptiveName string R/W Human-readable name for the node - the
name may be editable (depending on the
application) and, if editable, should be saved
to non-volatile memory by the application

2 Version string Const String supplied by the application to indicate
the application version running on the node

3 TxPower uint8 R/W Radio transmission power of the node - valid
values are in the range 0-3, corresponding to
the levels detailed in the description of the
bAHI_PhyRadioSetPower() function in the
JN516x Integrated Peripherals API User
Guide (JN-UG-3087) and JN514x Integrated
Peripherals API User Guide (JN-UG-3066)

Table 16: Node Module Variables
250 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.3.2 JenNet Module

The JenNet module has a module ID of 0xFFFFFF01 and contains information about
the network to which the local node belongs. The MIB variables for this module are
detailed below.

Type: 0 - Join, 1 - Leave, 2 - Move

Index Variable Name Type Access Description

0 DeviceType uint32 Const JenNet device type of node:
0 - Co-ordinator
1 - Router
2 - End Device

1 ParentInterface uint64 R Host Interface ID of node’s parent

2 TreeVersion uint32 R Version of the network tree. Allows the
monitoring of network changes - each time
a node joins or leaves the network, this
version number is incremented by one

3 SubTreeNodes uint32 R Total number of nodes in the tree below
this node

4 NetworkTable blob table R Table containing the addresses and
Device IDs of all the nodes in the network -
variable is only valid on the Co-ordinator.
Each entry in the table is a blob of the for-
mat detailed in Figure 24 below

5 LastChange blob R Blob in which the last network change is
recorded (node added, removed or
moved). This blob has the format detailed
in Figure 25 below

6 NeighbourTable blob table R Table containing the addresses of the
node’s immediate neighbours (parent and
children) and the link properties to these
nodes. Each entry in the table is a blob of
the format detailed in Figure 26 below

7 Depth uint32 R Depth of the local node in the network tree
(Co-ordinator is at a depth of zero)

Table 17: JenNet Module Variables

Figure 24: Format of NetworkTable Blob

Figure 25: Format of LastChange Blob

0 1 6 7 8 9 10 11

Host Interface ID Device ID

0 1 2 7 8

Host Interface IDType
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 251

Appendices
LQI = Link Quality Indicator, PER = Packet Error Rate

For definitions of these measures, refer to the Glossary in Appendix L.

F.3.3 Groups Module

The Groups module has a module ID of 0xFFFFFF02 and contains information about
the multicast group(s) to which the local node belongs. The MIB variables for this
module are detailed below.

F&S = Flags and Scope (see below)

The blob shown above in Figure 27 is a variable-length compressed representation of
the IPv6 multicast address of the group, shown below in Figure 28. The condensed
Group ID field is obtained by removing the leading zero bytes of the multicast address.

Figure 26: Format of NeighbourTable Blob

Index Variable Name Type Access Description

0 Groups blob table R Table indicating the multicast groups that
the local node has joined. Each entry in
the table is a blob of the format detailed in
Figure 27 below

1 AddGroup blob R/W Local node is added to a multicast group
by writing the group details to this variable.
The blob is of the format detailed in
Figure 27 below. Reading this variable
always gives 0

2 RemoveGroup blob R/W Local node is removed from a multicast
group by writing the group details to this
variable. The blob is of the format detailed
in Figure 27 below. Reading this variable
always gives 0

3 ClearGroups uint8 R/W Local node can be removed from all multi-
cast groups to which it belongs by writing
any value to this variable. Reading this
variable always gives 0

Table 18: Groups Module Variables

Figure 27: Format of Groups Blob

0 1 6 7 8 9

Host Interface ID LQI PER

0 1

Group IDF&S

x

1  x  14
252 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide

Flags and Scope

The F&S (Flags and Scope) field above comprises two 4-bit sub-fields, where the:

 4 most significant bits contain the multicast address flags (see Table 19)

 4 least significant bits represent the multicast address scope (see Table 20)

The four Flag bits (bits 7-4 of the F&S field) are used as follows:

The four Scope bits (bits 3-0 of the F&S field) are used as follows (also refer to the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086), which introduces scope for
unicast addresses):

All other Scope values are reserved

Figure 28: IPv6 Multicast Address of Group

Bit Flag Description

7 - Reserved

6 R (Rendevous) 1: Rendezvous point included
0: Rendezvous point not included

5 P (Prefix) 1: Address has network prefix
0: Address has no prefix information

4 T (Transient) 1: Address is temporary (dynamically assigned)
0: Address is established (known throughout the network)

Table 19: Multicast Address Flags

Value Scope Description

0x1 Interface-local Spans a single interface on a node and is only applicable to loopback
transmissions

0x2 Link-local Spans the same region as the link-local unicast scope, described in
the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086)

0x4 Admin-local Smallest scope that must be configured by administrator - that is, not
automatically derived from physical connectivity or other settings

0x5 Site-local Spans the same region as the site unicast scope, described in the
JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086)

0x8 Organisation-local Spans multiple sites of a single organisation

0xE Global Unrestricted span, as described in the JenNet-IP LAN/WAN Stack
User Guide (JN-UG-3086)

Table 20: Multicast Address Scopes

0 1 2

Group IDF&S0xFF

15
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 253

Appendices
F.3.4 OND Module

The OND (Over-Network Download) module has a module ID of 0xFFFFFF03 and
contains information about over-network downloads to the local node. The MIB
variables for this module are detailed below.

Status: 0 - Blank (no image currently present in this block)
1 - Current (image currently loaded and executing)
2 - Loading (image is in process of being loaded into device)
3 - Valid (image is complete and has passed checksum validation)

Index Variable Name Type Access Description

0 Images blob table R Indicates the firmware images present on
the node. Each entry in the table is a blob
of the format detailed in Figure 29 below

1 DeviceID uint32 R/W Indicates the Device ID to request when a
download is started using the Download
variable (below). Defaults to the Device ID
of the image currently running

2 ChipSet uint16 R/W Indicates the chipset to request when a
download is started using the Download
variable (below). Defaults to the chipset of
the image currently running

3 Revision uint16 R/W Indicates the image revision to request
when a download is started using the
Download variable (below). Defaults to the
revision of the image currently running

4 Download uint8 R/W An image download can be started by writ-
ing any value to this variable. The values
of the DeviceID, ChipSet and Revision var-
iables (above) will be used to request the
appropriate image

5 LoadImage uint8 R/W The Images table index of the image to be
selected and run - writing this index to the
variable starts the transfer to RAM

Table 21: OND Module Variables

Figure 29: Format of Images Blob

3 4 6 7 8 9 10 11

Device ID Chipset

1250

Revision Blocks Remaining Total Blocks Status
254 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.3.5 DeviceID Module

The DeviceID module has a module ID of 0xFFFFFF04, and contains the Device ID
of the local node and the IDs of the device types that the node can implement. The
MIB variables for this module are detailed below.

The possible standard device types are:

0x0001: Border-Router

Index Variable Name Type Access Description

0 DeviceID uint32 Const 32-bit identifier of the device (identifying the
make and model). Device ID is described in
Appendix C.1

1 DeviceTypes blob Const Blob representing the device types that the
node can implement. Each device type is rep-
resented by a 16-bit Device Type ID, as
described in Appendix C.2. The blob is of the
format detailed in Figure 30 below.

Table 22: DeviceID Module Variables

Figure 30: Format of DeviceTypes Blob

0

Device Type ID

Repeated for each device type
that node can implement

1

JN-UG-3080 v1.4 © NXP Laboratories UK 2013 255

Appendices
F.4 Standard Commands

The JIP layer interacts with a module via the MIB variables associated with the
module. This section details the standard commands for accessing these variables
(the MIB variables for the standard modules are detailed in Appendix F.3).

All JIP commands have the general format illustrated below in Figure 31.

 Version is the JIP layer version number - it used to enable future upgrades to
be backwards compatible and to provide an extra degree of validity checking
(but is currently always set to 0)

 Code is the command code (from those listed in Table 23)

 Handle is the unique identifier for the command (request and response) and is
user-defined, except bit 7 is reserved as a ‘stay awake’ flag (see Note 2 below)

 Payload is the variable-length payload (x bytes long) of the command

The standard JIP commands are listed and outlined in the table below.

Figure 31: Format of JIP Command

Command Code Description

‘Get’ request 0x10 Request to obtain the value of a variable

‘Get by ID’ request 0x1C Request to obtain the value of a variable in the module with
specified ID

‘Get’ response 0x11 Response to a previous ‘Get’ or ‘Get by ID’ request

‘Set’ request 0x12 Request to set the value of a variable

‘Set by ID’ request 0x1D Request to set the value of a variable in the module with
specified ID

‘Set’ response 0x13 Response to a previous ‘Set’ or ‘Set by ID’ request

‘Query Modules’ request 0x14 Request to query the JenNet-IP database for a list of avail-
able modules

‘Query Modules’ response 0x15 Response to a previous ‘Query Modules’ request

‘Query Variables’ request 0x16 Request to query the JenNet-IP database for a list of avail-
able variables within a module

‘Query Variables’ response 0x17 Response to a previous ‘Query Variables’ request

‘Trap’ request 0x18 Request to enable the generation of a notification when a
variable changes value

‘Untrap’ request 0x19 Request to disable the generation of a notification when a
variable changes value

Table 23: Standard Commands

0 1 2 3 x + 2

Version Payload (x bytes)Code Handle
256 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The formats of the above commands are detailed in the sub-sections below, which
include descriptions of the payload fields. The enumeration values for some of the
fields are detailed in Appendix F.6.

F.4.1 ‘Get’ Request

The ‘Get’ request can take one of the following two formats:

First Table Entry and Entry Count are optional and default to 0 and 255, respectively, if not
present. This is to maintain backwards compatibility with non-table variables.

‘Trap’ response 0x1A Response to a previous ‘Trap’ request

‘Trap’ notification 0x1B Notification of a change in a trapped variable

Note 1: A JIP command is embedded in an IEEE
802.15.4 MAC frame for transportation between
wireless nodes, as described in Appendix E.

Note 2: Bit 7 of the handle is reserved as a ‘stay awake’
flag which is set by the sender of the packet to request a
target End Device to stay awake in order to receive
further packets. When a packet with this bit set is
received by an End Device, the user-defined callback
function vJIP_StayAwakeRequest() is invoked. For
more information, refer to Section 4.6.3.

Figure 32: Formats of ‘Get’ Request

Command Code Description

Table 23: Standard Commands

0 1 2 3 6

Version Payload (5 bytes)Code Handle

4 5 7

Module
Index

Variable
Index

User-
supplied

0x100x00
Entry
Count

First Table Entry

0 1 2 3

Version Payload (3 bytes)Code Handle

4 5

Module
Index

First
Variable

Index

User-
supplied

0x100x00
Variable
Count
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 257

Appendices
F.4.2 ‘Get by ID’ Request

The ‘Get by ID’ request can take one of the following two formats:

First Table Entry and Entry Count are optional and default to 0 and 255, respectively, if not
present. This is to maintain backwards compatibility with non-table variables.

F.4.3 ‘Get’ Response

The ‘Get’ response is always of the following format:

Figure 33: Formats of ‘Get by ID’ Request

Figure 34: Format of ‘Get’ Response

0 1 2 3 6

Version Payload (8 bytes)Code Handle

4 5 7 8 9 10

Module ID
Variable

Index
User-

supplied
0x1C0x00

Entry
Count

First Table Entry

0 1 2 3 6

Version Payload (6 bytes)Code Handle

4 5 7 8

Module ID
First

Variable
Index

User-
supplied

0x1C0x00
Variable
Count

0 1 2 3

Version Payload (x bytes)Code Handle

4 5

Module
Index

First
Variable

Index

User-
supplied

0x110x00 Variable Records

x + 2
258 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The Variable Records field of the payload contains a series of sub-fields relating to the
variable to which the response applies (or the Variable Records field may be omitted):

In the case of a ‘Get’ response which relates to a Table variable (last response format
in Figure 35), the first six bytes shown above may be followed by information on one
or more table entries, where each entry is reported in the following format:

Figure 35: Possible Formats Get Response of ‘Variable Records’ Field

Figure 36: Table Entry Format in ‘Get’ Response

0 1 2 3

Data (y bytes)
Blob

Length
(y)

Status

Success

Type

Blob

y + 2

0 1 2 3

String (y bytes)
String
Length

(y)

Status

Success

Type

String

y + 2

0 1 2

Value
Status

Success

Type

Double

9

0 1 2

Value
Status

Success

Type

Float

3 4 5

0 1 2

Value
Status

Success

Type

(u)int64

9

0 1 2

Value
Status

Success

Type

(u)int32

3 4 5

0 1 2

Value
Status

Success

Type

(u)int16

3

0 1 2

Value
Status

Success

Type

(u)int8

0 1 2 3

Table Version
Number of

Remaining Entries

Status

Success

Type

Table

54

0 1 2 3

Entry Index Data (z bytes)
Blob

Length
(z)

z + 2
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 259

Appendices
If a ‘Get’ response reports a failure to access the target variable, the Variable Records
field contains only the Status sub-field, which is set to one of the following (for status
enumerations, refer to Appendix F.6.3):

 Bad module index: Specified module index was out-of-range

 Bad variable index: Specified variable index was out-of-range for given module

 Disabled: Remote variable has been disabled, so cannot be read

 Error: Module index or variable index is not valid

F.4.4 ‘Set’ Request

The ‘Set’ request is always of the following format:

The Variable Record field of the payload contains a series of sub-fields relating to the
variable to which the request applies. The possible formats for this field are shown in
Figure 38 below.

Figure 37: Format of ‘Set’ Request

0 1 2 3

Version Payload (x bytes)Code Handle

4 5

Module
Index

Variable
Index

User-
supplied

0x120x00 Variable Record

x + 2
260 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide

F.4.5 ‘Set by ID’ Request

The ‘Set by ID’ is always of the following format:

The Variable Record field of the payload contains a series of sub-fields relating to the
variable to which the request applies. The possible formats for this field are as shown
for ‘Set’ request in Figure 38 above.

Figure 38: Possible Formats of Set Request ‘Variable Records’ Field

Figure 39: Format of ‘Set by ID’ Request

0 1 2 3

Data (y bytes)
Blob

Length
(y)

Unused
Type

Blob

y + 2

0 1 2 3

String (y bytes)
String
Length

(y)
Unused

Type

String

y + 2

0 1 2

ValueUnused
Type

Double

9

0 1 2

ValueUnused
Type

Float

3 4 5

0 1 2

ValueUnused
Type

(u)int64

9

0 1 2

ValueUnused
Type

(u)int32

3 4 5

0 1 2

ValueUnused
Type

(u)int16

3

0 1 2

ValueUnused
Type

(u)int8

0 1 2 3 6

Version Payload (x bytes)Code Handle

4 5 7 8 x + 2

Module ID
Variable

Index
User-

supplied
0x1D0x00 Variable Record
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 261

Appendices
F.4.6 ‘Set’ Response

The ‘Set’ response is always of the following format:

The status code can be any of the following (for status enumerations, refer to
Appendix F.6.3):

 Success: The request was successfully processed

 Bad module index: Specified module index was out-of-range

 Bad variable index: Specified variable index was out-of-range for given module

 Access not allowed: Variable is read-only or const

 Bad buffer size:

 for string types, string is too long

 for blob types, data is of incorrect length

 Wrong type: Specified variable type did not match that of variable

 Disabled: Specified variable has been disabled and so cannot be set

 Error: Unknown error

F.4.7 ‘Query Modules’ Request

The ‘Query Modules’ request is always of the following format:

Note the following:

 ‘First Module Index’ can be set to 0x00 to indicate 'start at the first available
value'

 ‘Required Number of Records’ can be set to 0xFF to indicate 'return as many
records as possible'

 The number of records returned will be limited by the size of the UDP payload

Figure 40: Format of ‘Set’ Response

Figure 41: Format of ‘Query Modules’ Request

0 1 2 3

Version Payload (3 bytes)Code Handle

4 5

Module
Index

Variable
Index

User-
supplied

0x130x00
Status
Code

0 1 2 3

Version Payload (2 bytes)Code Handle

4

First
Module
Index

Required
no. of

Records

User-
supplied

0x140x00
262 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.4.8 ‘Query Modules’ Response

The ‘Query Modules’ response is always of the following format:

The status code can be any of the following (for status enumerations, refer to
Appendix F.6.3):

 Success: The request was successfully processed

 Bad module index: Specified ‘First Module Index’ is out-of-range

 Error: Unknown error

Each ‘Query Modules’ request results in a single ‘Query Modules’ response, in which
several modules may be reported. The ‘List of Records’ field contains the returned
records (if any) containing the names of the reported modules, with each record
having the following format:

In order to discover all of the modules on a remote node, multiple ‘Query Modules’
requests may be needed. The requesting node will wait for each response then issue
a further request until all modules have been reported (number of records left is zero).

F.4.9 ‘Query Variables’ Request

The ‘Query Variables’ request is always of the following format:

Figure 42: Format of ‘Query Modules’ Response

Figure 43: Format of Returned ‘Module Record’

Figure 44: Format of ‘Query Variables’ Request

0 1 2 3 6

Version Payload (x bytes)Code Handle

4 5 x + 2

User-
supplied

0x150x00 List of Module Records
Status
Code

No. of
Records
Returned

No. of
Records

Left

0 1 2 3 6

Module
Index

Module Name String (y bytes)Module ID
String
Length

(y)

4 5 y + 5

0 1 2 3

Version Payload (3 bytes)Code Handle

4

Module
Index

First
Variable

Index

User-
supplied

0x160x00

5

Required
no. of

Records
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 263

Appendices
Note the following:

 ‘First Variable Index’ can be set to 0x00 to indicate 'start at the first available
value'

 ‘Required Number of Records’ can be set to 0xFF to indicate 'return as many
records as possible'

 The number of records returned will be limited by the size of the UDP payload

F.4.10 ‘Query Variables’ Response

The ‘Query Variables’ response is always of the following format:

The status code can be any of the following (for status enumerations, refer to
Appendix F.6.3):

 Success: The request was successfully processed

 Bad module index: Specified module index is out-of-range

 Bad variable index: Specified ‘First Variable Index’ is out-of-range for the
specified module

 Error: Unknown error

Each ‘Query Variables’ request results in a single ‘Query Variables’ response, in which
several variables may be reported. The ‘List of Records’ field contains the returned
records (if any) containing the names of the reported variables, with each record
having the following format:

In order to discover all of the variables of a module on a remote node, multiple ‘Query
Variables’ requests may be needed. The requesting node will wait for each response
then issue a further request until all of the module’s variables have been reported
(number of records left is zero).

Figure 45: Format of ‘Query Variables’ Response

Figure 46: Format of Returned ‘Variable Record’

0 1 2 3 6

Version Payload (x bytes)Code Handle

4 5 x + 2

User-
supplied

0x170x00 List of Variable Records
Status
Code

Module
Index

No. of
Records
Returned

7

No. of
Records

Left

0 1 2 y + 3

Variable
Index

SecurityVariable Name String (y bytes)
Access
Type

y + 2 y + 4
String
Length

(y)

Variable
Type
264 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.4.11 ‘Trap’ Request

The ‘Trap’ request is always of the following format:

The originator of the request will be subsequently be notified of any change in the
value of the trapped variable (specified by the Module Index and Variable Index
values) via a ‘Trap Notification’ message - see Appendix F.4.14. The ‘Notify Handle’
will be passed as the user-supplied handle to the ‘Trap Notification’ message(s). The
JenNet-IP stack keeps a record of the IP address and port number of all the nodes that
have requested a trap.

F.4.12 ‘Untrap’ Request

The ‘Untrap’ request is always of the following format:

The originator of the request will subsequently be no longer notified of a change in the
value of the variable specified by the Module Index and Variable Index values.

F.4.13 ‘Trap’ Response

The ‘Trap’ response is always of the following format:

This is a response to a ‘Trap’ or ‘Untrap’ request and is sent to the notification address
specified in the request.

Figure 47: Format of ‘Trap’ Request

Figure 48: Format of ‘Untrap’ Request

Figure 49: Format of ‘Trap’ Response

0 1 2 3

Version Payload (3 bytes)Code Handle

4

Notify
Handle

Module
Index

User-
supplied

0x180x00

5

Variable
Index

0 1 2 3

Version Payload (3 bytes)Code Handle

4

Unused
Module
Index

User-
supplied

0x190x00

5

Variable
Index

0 1 2 3

Version Payload (3 bytes)Code Handle

4

Module
Index

User-
supplied

0x200x00

5

Variable
Index

Status
Code
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 265

Appendices
The status code can be any of the following (for status enumerations, refer to
Appendix F.6.3):

 Success: The request was successfully processed

 Bad module index: Specified module index was out-of-range

 Bad variable index: Specified variable index is out-of-range for given module

 Disabled: Remote variable has been disabled (a notification will, however, be
issued with a status of "Success" when the variable is enabled).

 Error: Remote node is unable to store IP address and port number

F.4.14 Trap Notifications

A Trap Notification is sent out each time a trapped variable is updated. The Trap
Notification takes one of the following formats:

Figure 50: Formats of a Trap Notification

0 1 2 3 6

Version Payload (x + 5 bytes)Code Handle

4 5 7 8 x + 7

Module
Index

Variable
Index

User-
supplied

0x1B0x00 String (x bytes)
Status

Success

Type

String

String
Length

(x)

0 1 2 3 6

Version Payload (12 bytes)Code Handle

4 5 7 14

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Value (8 bytes)
Status

Success

Type

Double

0 1 2 3 6

Version Payload (8 bytes)Code Handle

4 5 7 10

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Value (4 bytes)
Status

Success

Type

Float

8 9

0 1 2 3 6

Version Payload (12 bytes)Code Handle

4 5 7 14

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Value (8 bytes)
Status

Success

Type

(u)int64

0 1 2 3 6

Version Payload (8 bytes)Code Handle

4 5 7 10

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Value (4 bytes)
Status

Success

Type

(u)int32

8 9

0 1 2 3 6

Version Payload (6 bytes)Code Handle

4 5 7

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Value (2 bytes)
Status

Success

Type

(u)int16

8

0 1 2 3 6

Version Payload (5 bytes)Code Handle

4 5 7

Module
Index

Variable
Index

User-
supplied

0x1B0x00
Value

(1 byte)

Status

Success

Type

(u)int8

0 1 2 3 6

Version Payload (x + 5 bytes)Code Handle

4 5 7 8 x + 7

Module
Index

Variable
Index

User-
supplied

0x1B0x00 Data (x bytes)
Status

Success

Type

Blob

Blob
Length

(x)

0 1 2 3 6

Version Payload (4 bytes)Code Handle

4 5

Module
Index

Variable
Index

User-
supplied

0x1B0x00
Status

Success

Type
Table
Blob
266 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
A Trap Notification of the following format is issued when the state of a trapped
variable is changed to disabled (if the variable is later enabled, a notification in a
format from Figure 50 will then be issued with a status of "Success"):

F.5 Low-Energy Frames

A low-energy device (introduced in Section 3.9) transmits basic IEEE 802.15.4 frames
(rather than JenNet-IP frames) that carry the minimum payload necessary to be useful
and secure. The IEEE 802.15.4 frame format is depicted in Figure 21 on page 244.

The only JenNet-IP command that a low-energy device can issue is the ‘Set by ID’
command, in order to remotely set the value of a variable in a specified MIB. The frame
payload must specify the MIB, the variable and the new value of the variable to set.

The format of the frame payload is shown in Figure 52 and the payload fields are
described in Table 24 below.

* Least significant byte of frame counter is included as sequence number in the frame header
** The MIB ID, variable index and variable value fields are encrypted

The payload is specified as an array in the structure tsMacFrame (see Appendix
K.4.1) which is passed into the MicroMAC function vMMAC_StartMacTransmit().
This structure also contains information for the MAC header of the frame, such as the
destination PAN ID and address. Alternatively, a frame can be transmitted by directly
accessing the PHY layer of the MicroMAC stack. For full details of the MicroMAC, refer
to Appendix K.

Figure 51: Format of Trap Notification for Disabling Variable

Figure 52: Payload Format for Low-Energy Frame

Field Description

Frame Counter * Three most significant bytes of 4-byte frame counter

MIB ID ** Identifier of MIB (module) containing the variable - see Appendix C.3

Variable Index ** Index of MIB variable to set

Variable Value ** New value of MIB variable

MIC Message Integrity Code (for security check)

Table 24: Payload Fields of Low-Energy Frame

0 1 2 3

Version Payload (3 bytes)Code Handle

4 5

Module
Index

Variable
Index

User-
supplied

0x1B0x00
Status

Disabled

Frame Counter
Variable Value

(x bytes)
MIB ID

 Variable
Index

MIC

0 1 2 3 64 5 x + 77 8 x + 8 x + 9
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 267

Appendices
F.6 Enumerations

This section details the enumerations that are used in the JIP commands detailed in
Appendix F.4.

F.6.1 Variable Type Enumerations

The following enumerations are used to represent variable types:

Value Type

0x00 8-bit signed integer

0x01 16-bit signed integer

0x02 32-bit signed integer

0x03 64-bit signed integer

0x04 8-bit unsigned integer

0x05 16-bit unsigned integer

0x06 32-bit unsigned integer

0x07 64-bit unsigned integer

0x08 32-bit IEEE 754 float

0x09 64-bit IEEE 754 double

0x0A Text string

0x0B Binary blob

0x4B Blob table

Table 25: Variable Type Enumerations
268 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
F.6.2 Access Type Enumerations

The following enumerations are used to represent variable access types:

F.6.3 Status Enumerations

The following enumerations are used to represent the reported status:

Value Module

0x00 Const

0x01 Read only

0x02 Read and write

Table 26: Access Type Enumerations

Value Status

0x00 Success

0x7F Timeout

0x8F Bad module index

0x9F Bad variable index

0xAF Access not allowed

0xBF Bad buffer size

0xCF Wrong type

0xDF Value rejected

0xEF Disabled

0xFF Error

Table 27: Status Enumerations
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 269

Appendices
G. JenNet-IP Browser

The JenNet-IP Browser is an example of a generic engineering application which can
be used on a LAN/WAN device in order to monitor and control a JenNet-IP WPAN via
an IP connection. A Java version of the application, which can be run on the LAN/WAN
device (such as a PC), is supplied as an executable in the JenNet-IP SDK:

JenNet-IP-Browser-x.y.z.jar

A C-version of the application is provided in the firmware of the Linksys or Buffalo
router for JenNet-IP demonstration systems and runs on the router. Assuming your
PC has an IP connection to the router, this version of the application can be accessed
by directing your web browser to:

http://192.168.11.1/cgi-bin/Browser.cgi

You can write your own versions of these applications using the Java JIP API and C
JIP API, detailed in the JenNet-IP LAN/WAN Stack User Guide (JN-UG-3086).

This appendix provides useful preliminary information for getting started with the Java
version of the JenNet-IP Browser.

G.1 Browser Functionality

The JenNet-IP Browser application allows you to:

 Browse nodes in the wireless network of a JenNet-IP system

 View the MIBs on a node

 Monitor changing MIB variable values, using trap, poll and manual methods

 Write new values to MIB variables (write permissions allowing)

 Diagnose node issues using log details generated by the browser

G.2 Pre-requisites

To run the Java version of the JenNet-IP Browser application, your must have the
following on your PC/workstation:

 Windows (XP, Vista or 7), Linux or Mac OSX

 Java 1.6 or higher

Normally, an IPv6 connection is used between the PC/workstation and WPAN.
Preparing the IPv6 connection is described in Appendix G.2.1.

Alternatively, an IPv4 connection can be used between the PC/workstation and
WPAN. Configuring an IPv4 connection is described in Appendix G.2.2.

Note: The Java JenNet-IP Browser is fully described in
an online manual which is embedded in the application
and which can be accessed via Help > Online manual.
270 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
G.2.1 Preparing an IPv6 Connection

In order to use an IPv6 connection between the PC/workstation and WPAN, you will
need:

 IPv6 enabled on the machine (enabled by default in Windows Vista and 7)

 IPv6 address of the wireless network Co-ordinator

Procedures for these requirements are presented below.

To enable IPv6 in Windows XP

This procedure may only be required if you are using Windows XP, as IPv6 is enabled
by default in Windows Vista and 7.

1. Launch a command window on your PC/workstation.

2. Enter the following at the command prompt:

netsh interface ipv6 install

3. Press the <Enter> key and wait for the command prompt to re-appear.

To obtain and enter the IPv6 address of the Co-ordinator

This procedure assumes an IP connection between your PC/workstation and a
Linksys or Buffalo router used for JenNet-IP demonstration systems.

1. Access the web version of the JenNet-IP Browser by entering the following
address in your web browser: http://192.168.11.1/cgi-bin/Browser.cgi

2. Once this browser has detected and displayed the nodes in the wireless
network, click on Border-Router (which also acts as the Co-ordinator).

3. Copy or make a note of the IPv6 address for the Co-ordinator, which is shown
in the orange bar near the top of the resulting page.

4. Run the Java version of the JenNet-IP Browser, press the Discover button
and enter the IPv6 address into the IP address field of the resulting window.

G.2.2 Preparing an IPv4 Connection

In order to use an IPv4 connection between the PC/workstation and WPAN, follow the
procedure below:

1. Run the Java version of the JenNet-IP Browser.

2. Follow the menu path Configure > Network. The Configure network
properties dialogue box appears.

3. In the dialogue box:

 Tick the IPv4 checkbox.

 In the IPv4 address field, enter the IPv4 address of the Border-Router of
the wireless network.

Leave all other fields at their default values (unless specific values are
required).

4. Click OK.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 271

Appendices
H. Memory Heap

The JenNet-IP stack uses a memory heap, of which you may need to be aware during
application development. This appendix outlines the use of this heap by JenNet-IP.

H.1 Heap Organisation and Use

The heap is a block of RAM which is made available to the stack layers so that, when
they are first initialised, they can acquire some of the storage that they need. This
method is used in preference to statically-allocated memory, as it allows the amount
of required memory to be varied by the application without needing to rebuild the stack
library files. Examples of heap-allocated storage include IEEE 802.15.4 MAC frame
buffers, JenNet Routing tables and OND image data.

In JenNet-IP the heap is kept very simple, for efficiency, and one limitation is that
allocated memory space cannot be freed and returned to the heap - once space has
been allocated, it can never be recovered. As such, the heap is only accessed during
initialisation and is not used for short-lived data storage. Stack layers keep a record of
the memory areas that they have obtained from the heap and will re-use the same
areas following a warm start.

When using OND (Chapter 10), the function eOND_DevInit() allocates a 1-Kbyte
memory buffer from the heap for use by OND.

The space available for the heap is determined during the application build process.
The heap simply takes all of the available RAM above the application and beneath a
fixed reserved space for the processor stack, although it is possible for the processor
stack, at run-time, to extend beyond this reserved space.

H.2 Heap Error Conditions

There are two possible error conditions related to the heap:

 Not enough heap space for all of the requests from the stack

This will immediately result in a trap exception on the JN5142-J01 device and
JN516x devices, while on the JN5148-J01 device it will most likely generate a
bus error exception shortly afterwards.

 Processor stack extends into allocated heap

By default, this has no immediate effect other than corrupting some of the data,
which may result in unpredictable behaviour. However, for a more deterministic
response, the application can intercept the heap allocation function and enable
a stack overflow exception. This is done in the Application Note JenNet-IP Smart
Home (JN-AN-1162). Doing this will result in a stack overflow exception as soon
as the processor stack runs into the allocated part of the heap.

Both error conditions are fatal, as they indicate that there is not enough space to run
both the stack and the application.

Exception handling is described in Appendix J.
272 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
I. Example Over-Network Download (OND)

This appendix provides instructions for performing an example Over-Network
Download (OND) based on the JenNet-IP EK040 Evaluation Kit, described in the
JenNet-IP EK040 Evaluation Kit User Guide (JN-UG-3089). These instructions refer
to the JenNet-IP Browser, introduced in Section 3.2.4 and provided in the Linksys
router of the evaluation kit. OND is described in general terms in Chapter 10.

This OND example is based on the JenNet-IP system illustrated below.

To download a new firmware image (for an upgrade or downgrade) from the PC to a
node (light/bulb) of the WPAN:

1. Determine the version number of the firmware to be downloaded. The file
should have the version number as the last field in the filename - for example,
the version of the following firmware is 500:

0x11111111p_DeviceBulb_SSL2108_JN5142J01_v500.ond

2. Determine the version of the firmware which is currently present in the target
device, as follows:

a) Access the OND MIB of the target device by directing the web browser on
the PC to the following page of the JenNet-IP Browser:

http://192.168.11.1/cgi-bin/Browser.cgi?Mode=Network

b) Now click on the link to the target device.

c) Access the OND MIB and record the value of the “Revision” variable.

Figure 53: Example JenNet-IP System for OND

USB Dongle

PC

Accesses JenNet-IP
Browser on Linksys router

JenNet-IP WPAN
(IEEE 802.15.4)

Border Router

Carrier
Board

Light

Co-ordinator

USB

Linksys Router

Carrier
Board

Light
Carrier
Board

Light

NXP

Light

Carrier
Board

Remote
Control Unit

Wi-Fi network
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 273

Appendices
3. If the version number of the firmware to be downloaded is greater than the
version number of the firmware already present in the device (an upgrade)
then skip Step 4 and go straight to Step 5 - otherwise (for a downgrade),
continue to Step 4.

4. For a downgrade, notify the target JenNet-IP device as to which version of
firmware is to be downloaded by editing the device’s OND MIB as follows:

a) Enter the version number of the firmware to be downloaded (obtained in
Step 1) in the “Revision” field of the OND MIB (read in Step 2) and click the
Update button to the right of this field.

b) Enter a ‘1’ in the “Download” field and click the Update button to the right
of this field.

5. Initiate a firmware download from the Linksys router, as follows:

a) Log into the Linksys router from a web browser on the PC using the
following credentials:

 URL: http://192.168.11.1

 Username: root

 Password: snap

b) Navigate to the JenNet-IP page and then select the Firmware option.

c) Choose a file to be uploaded using the Choose File button.

d) Upload this file to the router by clicking the Upload new firmware button.

e) Select the file to be downloaded to the target device using the Distribute
radio button next to the appropriate image.

f) Ensure that the Automatic reset of Nodes checkbox is:

 ticked for a firmware upgrade

 NOT ticked for a firmware downgrade

g) Start the firmware distribution by clicking the Begin Distribution button.

h) In the case of a downgrade, when the download is complete, check that all
data was successfully received by the target device. This can be done be
by viewing the OND MIB of the device. Under the “Images” section, two
entries should be present - the current image and the newly downloaded
image. The last two digits of each entry is the index number of the image.

i) In the case of a downgrade, instruct the device to switch to the newly
loaded image by setting the “LoadImage” variable in the OND MIB to the
index number of the new image (determined in the previous step) and
clicking the Update button to the right of this field.

The device will now reboot using the new image. Success can be determined
by re-examining the OND MIB “Revision” field, as described in Step 2c.

Caution: Do not refresh this page after performing
these steps, otherwise the download will fail.
274 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
J. Exception Handling

This Appendix provides guidance on handling exceptions in JenNet-IP applications.

An exception is generally a situation in which the processor is unable to continue
running the application. When this happens, the processor jumps to a specific memory
address, which is in ROM for JN514x and in the boot sector of internal Flash memory
for JN516x.

J.1 Exception Types

The most important exceptions are listed and outlined in Table 28 below:

Usually the above exceptions are unrecoverable errors, so the best response in a
deployed system is to reset the device. During application development, however, it
can be useful to process exceptions to help determine the cause of the problem.

Exception Description

Bus error The processor has tried to read from or write to a memory address that is
not valid. Valid addresses are those for the Flash memory, RAM and periph-
erals. Trying to access other memory addresses, or peripherals that have
not been enabled, will result in a ‘bus error’ exception.

Unaligned access The processor can only access data if it is naturally aligned. This means
that a 32-bit word must be on a 32-bit address boundary (least significant 2
bits of address are 0), a 16-bit half-word must be on a 16-bit address bound-
ary (least significant bit of address is 0) and an 8-bit byte can be at any
address boundary (all bits of address are used). Attempting to access data
with a mis-aligned address will generate an ‘unaligned access’ exception.
This may occur if the application attempts to use a byte array as a 32-bit
word, for example.

Illegal instruction The instruction that the processor has read from memory is not valid. The
most common cause of this is jumping to the wrong location - for example, if
a callback function is not registered correctly.

Stack overflow The processor stack starts at the top (highest address) in RAM and moves
down through the RAM as required by functions for temporary storage. It is
possible to set a bottom limit on how far down the stack can extend - if this
point is reached, a ‘stack overflow’ exception occurs. The limit is set to the
optimum value by the heap manager in JenNet-IP applications so if this
exception occurs, it means that the application has run out of RAM.

System Call This can only be generated intentionally by hand-crafted assembler code
and it should not be necessary for an application to handle it.

Trap This can be generated by hand-crafted assembler code or debuggers. On
the JN516x device, it is also generated by the heap manager if the allocated
heap space is exhausted.

Table 28: Main Exceptions
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 275

Appendices
J.2 Exception Handlers

All NXP JN51xx devices include a default handler for each of the exceptions listed in
Appendix J.1. These default handlers store the current state of the device (the stack
frame - see later) and implement hooks that allow the application to provide additional
handlers, but otherwise they do nothing. As such, if the application does not provide
an additional handler for a particular exception, the default handler will cause the
device to hang when the exception is generated.

The applications in the Application Note JenNet-IP Smart Home (JN-AN-1162)
provide additional handlers that store the exception information in Flash memory and
then reset the device, which is the most effective response in a production component.
Once the contents of the Application Note have been installed, the handler code can
be found in the directory:

Applications/JN-AN-1162-JenNet-IP-Smart-Home/Common/Exception.c.

The process of registering a user-defined exception handler differs between the
JN516x and JN514x devices, as described in Appendix J.2.1 and Appendix J.2.2
below.

J.2.1 Handler Registration for JN516x

For the JN516x device, a user-defined exception handler can be registered by the
application simply by providing a function with a specific name - it will then be
automatically used. The function prototypes are:

void vException_BusError(uint32 u32StackPointer, uint32 u32Vector);

void vException_UnalignedAccess (uint32 u32StackPointer, uint32 u32Vector);

void vException_IllegalInstruction (uint32 u32StackPointer, uint32
u32Vector);

void vException_SysCall (uint32 u32StackPointer, uint32 u32Vector);

void vException_Trap (uint32 u32StackPointer, uint32 u32Vector);

void vException_StackOverflow(uint32 u32StackPointer, uint32 u32Vector);

In all the above cases, the two parameters passed to the handler are:

 u32StackPointer: This is the stack pointer, which is the address of the base
of the stack frame. The stack frame can be used to further analyse the cause of
the exception, if required. Details of the stack frame are provided in Appendix
J.3.

 u32Vector: The exception vector, which is the exception number. The
exception vector is also available within the stack frame, and is provided to
allow the application to use the same handler for several exceptions, if
required.
276 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
J.2.2 Handler Registration for JN514x

For a JN5142-J01 or JN5148-J01 device, all exception handlers are listed in a table
at the start of RAM and this list should be updated during application initialisation to
introduce the required user-defined handlers. The function prototypes are the same
as indicated above for the JN516x device.

The entries in the table can be defined in the application code as follows:

#define BUS_ERROR *((volatile uint32 *)(0x4000000))

#define UNALIGNED_ACCESS *((volatile uint32 *)(0x4000008))

#define ILLEGAL_INSTRUCTION *((volatile uint32 *)(0x400000c))

#define SYSCALL *((volatile uint32 *)(0x4000014))

#define TRAP *((volatile uint32 *)(0x4000018))

#define STACK_OVERFLOW *((volatile uint32 *)(0x4000020))

The handlers can then be registered via simple assignments - for example:

BUS_ERROR = (uint32)vException_BusError;

UNALIGNED_ACCESS = (uint32)vException_UnalignedAccess;

ILLEGAL_INSTRUCTION = (uint32)vException_IllegalInstruction;

STACK_OVERFLOW = (uint32)vException_StackOverflow;

J.3 Stack Frame

When an exception occurs, the default handler stores the stack frame on the
processor stack in RAM. The contents of the stack frame are as indicated in Table 29
below.

Address Offset
(from base address
of stack frame)

Value Description Comments

0x00 r0 Contents of register 0 Always has value 0, but stored for
consistency with debuggers

0x04 r1 Contents of register 1 Contains the stack pointer at the time
that the exception occurred

0x08 r2 Contents of register 2 General-purpose register

:
:

:
:

:
:

:
:

0x20 r8 Contents of register 8 General-purpose register

0x24 r9 Contents of register 9 Contains the return address for the
last function called prior to the excep-
tion

0x28 r10 Contents of register 10 General-purpose register

:
:

:
:

:
:

:
:

Table 29: Stack Frame
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 277

Appendices
The remaining RAM from offset 0x50 to the end of RAM is the processor call stack.
With a disassembly of the application, it is possible to trace the execution all the way
back to the most recent reset.

0x3C r15 Contents of register 15 General-purpose register

0x40 Vector Exception number Values are:

• bus error - 0x02

• unaligned access - 0x06

• illegal instruction - 0x07

• syscall - 0x0C

• trap - 0x0E

• stack overflow - 0x10

0x44 ESR Status register Contents of processor’s status regis-
ter at time of exception

0x48 EPCR Program counter Value of program counter (execution
address) at time of exception

0x4C EEAR Effective address Effective address at time of excep-
tion. This value is valid if the proces-
sor was attempting to read or write
data when the exception occurred,
and is the address of the data that it
was trying to access

Table 29: Stack Frame
278 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K. MicroMAC for Low-Energy Devices

A low-energy device (introduced in Section 3.9) does not require any JenNet-IP
software components, as it transmits simple IEEE 802.15.4 frames (rather than
JenNet-IP frames). Therefore, the software required by a low-energy device is an
application and the IEEE 802.15.4 stack.

A special version of the IEEE 802.15.4 stack can be employed in which the MAC layer
is replaced with an NXP-adapted ‘MicroMAC’ layer in order to minimise the energy
required for frame transmissions (particularly useful for energy-harvesting nodes) and
to reduce application code size. The MicroMAC stack is depicted in Figure 54 below.

This appendix describes the NXP MicroMAC software, which comprises the
MicroMAC stack and the MicroMAC Application Programming Interface (API)
containing C functions for use in application development. This software is provided in
the JN516x JenNet-IP SDK (JN-SW-4065).

K.1 Enabling the MicroMAC

In order to use the MicroMAC stack, it must be enabled for the application on the
source node as follows:

 In the application’s makefile, add the MicroMAC library in the ‘Additional
libraries’ section, as shown below:

Application libraries

Specify additional Component libraries

APPLIBS += MMAC

 Also in the makefile, set the stack parameter as follows:

JENNIC_STACK = None

 In the application code, reference the header file MMAC.h, as shown below:

#include "MMAC.h"

 In the application code, call vMMAC_Enable() as the first MicroMAC API
function (see Section K.2.1 and Section K.3.1)

Figure 54: MicroMAC Stack

Note: The MicroMAC software is only supported on the
JN516x range of microcontrollers and can be used on
any device in the range: JN5168, JN5164 or JN5161.

IEEE 802.15.4 PHY Layer

Application

NXP MicroMAC Layer
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 279

Appendices
K.2 Application Coding for the MicroMAC

This section describes the function calls that are required in an application in order to
use the MicroMAC to transmit and receive frames. The descriptions are organised in
the following sub-sections:

 Initialisation - see Section K.2.1

 Transmitting frames - see Section K.2.2

 Receiving frames - see Section K.3.3

The referenced MicroMAC API functions are fully detailed in Section K.3.

K.2.1 Initialisation

In order to initialise the MicroMAC, the first function that must be called is
vMMAC_Enable(). This function enables the MAC hardware block on the JN516x
device.

Next, MicroMAC interrupts should be enabled using the function
vMMAC_EnableInterrupts(). This will allow interrupts to be generated to inform the
application when frames have been transmitted and/or received. The above function
requires a user-defined interrupt handler function to be specified, which will be
automatically invoked when a MicroMAC interrupt occurs. For the prototype of this
interrupt handler, refer to the description of vMMAC_EnableInterrupts() on page 285.

The radio transceiver of the JN516x device must then be set up by calling two
functions:

 vMMAC_ConfigureRadio() must first be called to configure and calibrate the
radio transceiver

 vMMAC_SetChannel() must then be called to select the IEEE 802.15.4
2.4-GHz channel on which the transceiver will operate (in the range 11-26)

The JN516x device is then ready to transmit and receive frames, as described in
Appendix K.2.2 and Appendix K.2.3.

The above functions are fully detailed in Section K.3.1.

K.2.2 Transmitting Frames

A frame can be transmitted using the function vMMAC_StartMacTransmit(). When
calling this function, a number of options are available and all these options require
pre-configuration (before the above transmit function is called).

Note: While receiving frames is supported by the
MicroMAC, this feature is not currently used with a
JenNet-IP system.
280 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
The transmit options and the necessary pre-configuration are as follows:

 Delayed transmission

This option allows the transmission to be delayed until a certain ‘time’. This time
is represented by a value of the free-running 62500-Hz internal clock. Use of this
feature requires the following pre-configuration:

a) The timing function u32MMAC_GetTime() must first be called to obtain
the current value of the internal clock.

b) The function vMMAC_SetTxStartTime() must then be immediately called
to specify the ‘time’ at which the next transmission should occur. This ‘time’
should be calculated by adding the ‘current time’ (obtained above) to the
required delay (as a number of clock cycles).

 Automatic acknowledgements

This option requests the transmitted frame to be acknowledged by the recipient.
If no acknowledgement is received, the frame will be re-transmitted. Use of this
feature requires pre-configuration by calling the vMMAC_SetTxParameters()
function, in which the number of attempts to transmit a frame without an
acknowledgement must be specified.

 Clear Channel Assessment (CCA)

This option allows CCA to be implemented so that the transmission will only be
performed when the relevant radio channel is clear of other traffic (for the details
of CCA, refer to the IEEE 802.15.4 Specification). Use of this feature requires
pre-configuration by calling the vMMAC_SetTxParameters() function, in which
the following values must be specified:

 Minimum and maximum values for the Back-off Exponent (BE)

 Maximum number of back-offs (before the transmission is abandoned)

Once vMMAC_StartMacTransmit() has been called and the transmission has
completed, an E_MMAC_INT_TX_COMPLETE interrupt is generated and the
registered interrupt handler is invoked. This interrupt only indicates that the
transmission attempt has completed and not that it has been successful. The function
u32MMAC_GetTxErrors() can then be used to check for transmission errors.

The above functions are fully detailed in Section K.3.2, except the timing function
which is detailed in Section K.3.4.

The format of a frame that is transmitted from a low-energy device which uses the
MicroMAC is described in Appendix F.5.

Note: The function vMMAC_StartPhyTransmit() can
be used as an alternative to the function
vMMAC_StartMacTransmit(). The alternative function
provides direct access to the PHY layer of the stack, if
required. However, the ‘automatic acknowledgements’
option is not available with this function. MAC and PHY
modes are described in Section K.6.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 281

Appendices
K.2.3 Receiving Frames

While receiving frames is supported by the MicroMAC, this feature is not currently
used with a JenNet-IP system. The feature is described here for completeness.

A frame can be received using the function vMMAC_StartMacReceive(), which
enables the radio receiver until a frame has arrived and been received. When calling
this function, a number of options are available and some of these options require pre-
configuration (before the above receive function is called).

The receive options and the necessary pre-configuration (if any) are as follows:

 Delayed receive

This option allows enabling the radio receiver to be delayed until a certain ‘time’.
This time is represented by a value of the free-running 62500-Hz internal clock.
Use of this feature requires the following pre-configuration:

a) The timing function u32MMAC_GetTime() must first be called to obtain
the current value of the internal clock.

b) The function vMMAC_SetRxStartTime() must then be immediately called
to specify the ‘time’ at which the receiver should be enabled. This ‘time’
should be calculated by adding the ‘current time’ (obtained above) to the
required delay (as a number of clock cycles).

 Automatic acknowledgements

This option allows automatic acknowledgements to be sent. If this option is
enabled and an acknowledgement has been requested for a received frame, the
stack will automatically return an acknowledgement to the sender of the frame.

 Malformed frames

This option allows the rejection of received frames that appear to be malformed.

 Frame Check Sequence (FCS) errors

This option allows the rejection of received frames that have FCS errors.

 Address matching

This option allows the rejection of frames that do not contain the destination
identifer values of the local node. These local node identifers must be pre-
configured using the function vMMAC_SetRxAddress() and are as follows:

 PAN ID of the network to which the local node belongs

 16-bit short address of the local node

 64-bit IEEE/MAC (extended) address of the local node

Once vMMAC_StartMacReceive() has been called and the receive has completed,
the receiver is disabled and two interrupts are generated, with the registered interrupt
handler invoked separately for each one:

 E_MMAC_INT_RX_HEADER signals the reception of the MAC header of the
frame (but the interrupt is generated after receiving the whole frame)

 E_MMAC_INT_RX_COMPLETE signals the reception of the whole frame (but
is generated after an acknowedgement has been sent, if requested/enabled)
282 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
These interrupts only indicate that the receive attempt has completed and not that it
has been successful. The function u32MMAC_GetRxErrors() can then be used to
check for receive errors.

The above functions are fully detailed in Section K.3.3, except the timing function
which is detailed in Section K.3.4.

K.3 MicroMAC API

The MicroMAC library includes an API, comprising C functions for use by the
application. These functions are divided into the following categories and detailed in
the referenced sub-sections:

 Initialisation functions - see Section K.3.1

 Transmit functions - see Section K.3.2

 Receive functions - see Section K.3.3

 Timing function - see Section K.3.4

Note that the MicroMAC API is intentionally small and simple, in order to minimise the
application size and also to minimise the run-time when used in energy-harvesting
applications. Hence, the API functions do not carry out error checking or range
checking on the values passed to them.

K.3.1 Initialisation Functions

The following Initialisation functions are provided in the MicroMAC API.

Function Page

vMMAC_Enable 284

vMMAC_EnableInterrupts 285

vMMAC_ConfigureRadio 286

vMMAC_SetChannel 287

All of the above functions must be called by the application, starting with the function
vMMAC_Enable(). They should be called in the order that they are listed above.

Note: The function vMMAC_StartPhyReceive() can be
used as an alternative to the function
vMMAC_StartMacReceive(). The alternative function
provides direct access to the PHY layer of the stack, if
required. However, the ‘automatic acknowledgements’,
‘malformed frames’ and ‘address matching’ options are
not available with this function. MAC and PHY modes
are described in Section K.6.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 283

Appendices
vMMAC_Enable

Description

This function enables the MAC hardware block and must be called before using any
other MicroMAC functions.

After calling this function, the other MicroMAC Intialisation functions (described in
this section) should be called.

Parameters

None

Returns

None

void vMMAC_Enable(void);
284 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_EnableInterrupts

Description

This function enables transmit and receive interrupts, and allows the application to
register a user-defined callback function that will be invoked when a MicroMAC
interrupt is generated.

The uint32 value returned to the interrupt handler is a bitmap that indicates the
nature of the MicroMAC interrupt. This value can be logical-ORed with the following
enumerated values from teIntStatus to determine the type of interrupt:

 E_MMAC_INT_TX_COMPLETE (0x01)

 E_MMAC_INT_RX_HEADER (0x02)

 E_MMAC_INT_RX_COMPLETE (0x04)

For more information on these interrupt types, refer to Section K.5.5.

Parameters

prHandler Pointer to the MicroMAC interrupt handler callback function

Returns

None

void vMMAC_EnableInterrupts(void (*prHandler)(uint32));
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 285

Appendices
vMMAC_ConfigureRadio

Description

This function configures and calibrates the radio transceiver on the JN516x device.
It must be called before setting the channel (using vMMAC_SetChannel()) and
before attempting to transmit or receive (using the functions detailed in Section K.3.2
and Section K.3.3).

Parameters

None

Returns

None

void vMMAC_ConfigureRadio(void);
286 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_SetChannel

Description

This function sets the radio channel to be used by the radio transceiver. The required
2.4-GHz channel number in the range 11 to 26 must be specified.

The function must be called after the radio transceiver has been configured (using
vMMAC_ConfigureRadio()).

Parameters

u8Channel Required channel number in the range 11 to 26
(other values are not valid)

Returns

None

void vMMAC_SetChannel(uint8 u8Channel);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 287

Appendices
K.3.2 Transmit Functions

The following Transmit functions are provided in the MicroMAC API.

Function Page

vMMAC_SetTxParameters 289

vMMAC_SetTxStartTime 290

vMMAC_StartMacTransmit 291

vMMAC_StartPhyTransmit 292

u32MMAC_GetTxErrors 293
288 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_SetTxParameters

Description

This function sets a number of transmit parameters in connection with ‘automatic
acknowledgements’ and Clear Channel Assessment (CCA). These two features can
be enabled for an individual ‘MAC mode’ transmission when the transmit function
vMMAC_StartMacTransmit() is called. CCA can also be enabled for a ‘PHY mode’
transmission when the transmit function vMMAC_StartPhyTransmit() is called.

When transmitting with automatic acknowledgements enabled, the transmitted frame
must be acknowledged by the recipient. If no acknowledgement is received, the
frame will be re-transmitted. The number of attempts to transmit a frame without an
acknowledgement can be specified through the parameter u8Attempts.

The other three parameters are related to CCA (when enabled):

 Minimum and maximum values for the Back-off Exponent (BE) are specified through
the parameters u8MinBE and u8MaxBE, respectively

 The maximum number of back-offs (before the transmission is abandoned) is specified
through the parameter u8MaxBackoffs

For the details of CCA, refer to the IEEE 802.15.4 Specification. The above three
function parameters correspond to the PIB attributes macMinBE, macMaxBE and
macMaxCSMABackoffs, respectively, in the specification.

Parameters

u8Attempts Maximum number of transmission attempts without receiving
an acknowledgement

u8MinBE Minimum value of Back-off Exponent to be used in CCA

u8MaxBE Maximum value of Back-off Exponent to be used in CCA

u8MaxBackoffs Maximum number of back-offs in CCA

Returns

None

void vMMAC_SetTxParameters(uint8 u8Attempts,
uint8 u8MinBE,
uint8 u8MaxBE,
uint8 u8MaxBackoffs);

Note 1: The vMMAC_SetTxParameters function only needs
to be called once on every cold or warm start - it does not
need to be called for each transmit operation.

Note 2: The function does not need to be called if you are not
going to use CCA or automatic acknowledgements (selected
as options when calling the relevant transmit function).
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 289

Appendices
vMMAC_SetTxStartTime

Description

This function sets the ‘time’ at which a transmission should begin. This time is
specified as a value of the free-running 62500-Hz internal clock.

Before calling this function, the u32MMAC_GetTime() function should be called to
obtain the current value of the clock. The application should then determine the
required clock value to be specified in vMMAC_SetTxStartTime() in order to start
the next transmission at the desired time.

If used, this function must be called before the relevant transmit function
(vMMAC_StartMacTransmit() or vMMAC_StartPhyTransmit()), and a ‘delayed
transmission’ must be enabled in the options specified in the transmit function. The
transmitter will then be enabled and the transmission will be performed when the
internal clock value matches the value specified in this function.

Parameters

u32Time Internal clock value at which transmission should begin

Returns

None

void vMMAC_SetTxStartTime(uint32 u32Time);

Note: This function only needs to be called if you are going to
use the ‘delayed transmission’ feature (selected as an option
when calling the relevant transmit function).
290 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_StartMacTransmit

Description

This function starts the transmitter in ‘MAC mode’, with the specified options, in order
to transmit a frame. A pointer must be provided to the frame to be transmitted.

The MAC mode options relate to three features and are specified as enumerations:

Enumerations for the three features must be combined in a logical-OR operation.

Note the following:

 If the ‘delayed transmission’ option is enabled, this feature should be pre-configured
using the function vMMAC_SetTxStartTime().

 If the automatic acknowledgements and/or CCA options are enabled, these features
should be pre-configured using the function vMMAC_SetTxParameters().

If interrupts have been enabled using vMMAC_EnableInterrupts(), an interrupt
(E_MMAC_INT_TX_COMPLETE) will be generated once the transmission attempt
has completed.

Parameters

psFrame Pointer to a pre-filled structure containing the frame to be
transmitted (see Section K.4.1)

eOptions Value indicating the required features for this transmission
(see above and Section K.5.1)

Returns

None

void vMMAC_StartMacTransmit(tsMacFrame *psFrame,
teTxOption eOptions);

Feature Enumeration Description

Delayed transmission E_MMAC_TX_START_NOW Start transmission as soon as
this function is called

E_MMAC_TX_DELAY_START Start transmission at the time
specified beforehand using
vMMAC_SetTxStartTime()

Automatic acknowledgements
and re-try

E_MMAC_TX_NO_AUTO_ACK Do not enable automatic
acknowledgements and re-try

E_MMAC_TX_USE_AUTO_ACK Enable automatic acknowl-
edgements and re-try

Clear Channel Assessment
(CCA)

E_MMAC_TX_NO_CCA Do not enable CCA

E_MMAC_TX_USE_CCA Enable CCA
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 291

Appendices
vMMAC_StartPhyTransmit

Description

This function starts the transmitter in ‘PHY mode’, with the specified options, in order
to transmit a frame. A pointer must be provided to the frame to be transmitted.

The PHY mode options relate to two features and are specified as enumerations:

Enumerations for the two features must be combined in a logical-OR operation.

Note the following:

 If the ‘delayed transmission’ option is enabled, this feature should be pre-configured
using the function vMMAC_SetTxStartTime().

 If the CCA option is enabled, this feature should be pre-configured using the function
vMMAC_SetTxParameters().

If interrupts have been enabled using vMMAC_EnableInterrupts(), an interrupt
(E_MMAC_INT_TX_COMPLETE) will be generated once the transmission attempt
has completed.

Parameters

psFrame Pointer to a pre-filled structure containing the frame to be
transmitted (see Section K.4.2)

eOptions Value indicating the required features for this transmission
(see above and Section K.5.1)

Returns

None

void vMMAC_StartPhyTransmit(tsPhyFrame *psFrame,
teTxOption eOptions);

Note: This function provides direct access to the PHY layer of
the stack. If you do not need this access, you should use the
function vMMAC_StartMacTransmit() to transmit a frame.

Feature Enumeration Description

Delayed transmission E_MMAC_TX_START_NOW Start transmission as soon as
this function is called

E_MMAC_TX_DELAY_START Start transmission at the time
specified beforehand using
vMMAC_SetTxStartTime()

Clear Channel Assessment
(CCA)

E_MMAC_TX_NO_CCA Do not enable CCA

E_MMAC_TX_USE_CCA Enable CCA
292 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
u32MMAC_GetTxErrors

Description

This function can be used to report any errors that have occurred during a frame
transmission. It should only be called after the transmission has completed (indicated
by an interrupt, if enabled).

The returned value is a bitmap that can be logical-ORed with the following
enumerated values from teTxStatus to determine the error condition(s):

 E_MMAC_TXSTAT_CCA_BUSY (0x01)

 E_MMAC_TXSTAT_NO_ACK (0x02)

 E_MMAC_TXSTAT_ABORTED (0x04)

A returned value of 0 indicates no error.

For more information on the above error conditions, refer to Section K.5.2.

Parameters

None

Returns

32-bit bitmap indicating the errors that have occurred (see above)

uint32 u32MMAC_GetTxErrors(void);
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 293

Appendices
K.3.3 Receive Functions

The following Receive functions are provided in the MicroMAC API.

Function Page

vMMAC_SetRxAddress 295

vMMAC_SetRxStartTime 296

vMMAC_StartMacReceive 297

vMMAC_StartPhyReceive 299

u32MMAC_GetRxErrors 300

Note: While receiving frames is supported by the
MicroMAC, this feature is not currently used with a
JenNet-IP system. The Receive functions are described
here for completeness.
294 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_SetRxAddress

Description

This function configures settings for receiving frames when ‘address matching’ is
enabled. Address matching can be enabled for ‘MAC mode’ when the receive
function vMMAC_StartMacReceive() is called, but is not available for ‘PHY mode’.

The function specifies the following values for this purpose:

 PAN ID of the network to which the local node belongs

 16-bit short address of the local node

 64-bit IEEE/MAC (extended) address of the local node

Only received frames with destination parameters that match the values supplied to
this function will be accepted.

Parameters

u16PanId 16-bit PAN ID of network to which local node belongs

u16Short 16-bit short address of local node

psMacAddr Pointer to a structure containing 64-bit IEEE/MAC address of
local node (see Section K.4.4)

Returns

None

void vMMAC_SetRxAddress(uint16 u16PanId,
uint16 u16Short,
MAC_ExtAddr_s *psMacAddr);

Note 1: The vMMAC_SetRxAddress() function only needs to
be called once on every cold or warm start - it does not need
to be called for each receive operation.

Note 2: If receiving with address matching disabled or using
‘PHY mode’, the supplied values are ignored and so this
function call is unnecessary.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 295

Appendices
vMMAC_SetRxStartTime

Description

This function sets the ‘time’ at which the receiver should be enabled. This time is
specified as a value of the free-running 62500-Hz internal clock.

Before calling this function, the u32MMAC_GetTime() function should be called to
obtain the current value of the clock. The application should then determine the
required clock value to be specified in vMMAC_SetRxStartTime() in order to start
the receiver at the desired time.

If used, this function must be called before the relevant receive function
(vMMAC_StartMacReceive() or vMMAC_StartPhyReceive()), and a ‘delayed
receive’ must be enabled in the options specified in the receive function. The receiver
will then be enabled when the internal clock value matches the value specified in this
function.

Parameters

u32Time Internal clock value at which receiver should be enabled

Returns

None

void vMMAC_SetRxStartTime(uint32 u32Time);

Note: This function only needs to be called if you are going to
use the ‘delayed receive’ feature (selected as an option when
calling the relevant receive function).
296 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_StartMacReceive

Description

This function starts the receiver in ‘MAC mode’, with the specified options, in order
to receive a frame. A pointer must be provided to a structure to which the received
frame will be written.

The MAC mode options relate to five features and are specified as enumerations:

Enumerations for the five features must be combined in a logical-OR operation.

void vMMAC_StartMacReceive(tsMacFrame *psFrame,
teRxOption eOptions);

Feature Enumeration Description

Delayed receive E_MMAC_RX_START_NOW Start receiver as soon as this
function is called

E_MMAC_RX_DELAY_START Start receiver at the time
specified beforehand using
vMMAC_SetRxStartTime()

Automatic
acknowledgements

E_MMAC_RX_NO_AUTO_ACK Do not enable automatic
acknowledgements

E_MMAC_RX_USE_AUTO_ACK Enable automatic acknowl-
edgements

Malformed frames E_MMAC_RX_NO_MALFORMED Reject frames that appear to
be malformed

E_MMAC_RX_ALLOW_MALFORMED Accept frames that appear to
be malformed

Frame Check
Sequence (FCS)
errors

E_MMAC_RX_NO_FCS_ERROR Reject frames with FCS
errors

E_MMAC_RX_ALLOW_FCS_ERROR Accept frames with FCS
errors

Address matching E_MMAC_RX_NO_ADDRESS_MATCH Reject frames that do not
match the node’s identifiers
previously set with
vMMAC_SetRxAddress()

E_MMAC_RX_ADDRESS_MATCH Accept frames that do not
match the node’s identifiers
previously set with
vMMAC_SetRxAddress()
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 297

Appendices
Note the following:

 If the ‘delayed receive’ option is enabled, this feature should be pre-configured using
the function vMMAC_SetRxStartTime().

 If the ‘address matching’ option is enabled, this feature should be pre-configured using
the function vMMAC_SetRxAddress().

 If the ‘automatic acknowledgements’ option is enabled, on receiving a frame the device
will automatically send an acknowledgement frame.

Once a frame has been received, the receiver will be disabled and, if interrupts have
been enabled using vMMAC_EnableInterrupts(), two successive interrupts
(E_MMAC_INT_RX_HEADER and E_MMAC_INT_RX_COMPLETE) will be
generated.

Parameters

psFrame Pointer to a structure to receive the frame (see Section K.4.1)

eOptions Value indicating the required receive features (see above and
Section K.5.3)

Returns

None
298 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
vMMAC_StartPhyReceive

Description

This function starts the receiver in ‘PHY mode’, with the specified options, in order to
receive a frame. A pointer must be provided to a structure to which the received
frame will be written.

The PHY mode options relate to two features and are specified as enumerations:

Enumerations for the two features must be combined in a logical-OR operation.

If the ‘delayed receive’ option is enabled, this feature should be pre-configured using
the function vMMAC_SetRxStartTime().

Once a frame has been received, the receiver will be disabled and, if interrupts have
been enabled using vMMAC_EnableInterrupts(), two successive interrupts
(E_MMAC_INT_RX_HEADER and E_MMAC_INT_RX_COMPLETE) will be
generated.

Parameters

psFrame Pointer to a structure to receive the frame (see Section K.4.1)

eOptions Value indicating the required receive features (see above and
Section K.5.3)

Returns

None

void vMMAC_StartPhyReceive(tsPhyFrame *psFrame,
teRxOption eOptions);

Note: This function provides direct access to the PHY layer of
the stack. If you do not need this access, you should use the
function vMMAC_StartMacReceive() to receive a frame.

Feature Enumeration Description

Delayed receive E_MMAC_RX_START_NOW Start receiver as soon as this
function is called

E_MMAC_RX_DELAY_START Start receiver at the time
specified beforehand using
vMMAC_SetRxStartTime()

Frame Check
Sequence (FCS)
errors

E_MMAC_RX_NO_FCS_ERROR Reject frames with FCS
errors

E_MMAC_RX_ALLOW_FCS_ERROR Accept frames with FCS
errors
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 299

Appendices
u32MMAC_GetRxErrors

Description

This function can be used to report any errors that have occurred while receiving a
frame. It should only be called after the frame has been received (indicated by an
interrupt, if enabled).

The returned value is a bitmap that can be logical-ORed with the following
enumerated values from teRxStatus to determine the error condition(s):

 E_MMAC_RXSTAT_ERROR (0x01)

 E_MMAC_RXSTAT_ABORTED (0x02)

 E_MMAC_RXSTAT_MALFORMED (0x20)

A returned value of 0 indicates no error.

For more information on the above error conditions, refer to Section K.5.4.

Parameters

None

Returns

32-bit bitmap indicating the errors that have occurred (see above)

uint32 u32MMAC_GetRxErrors(void);
300 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.3.4 Timing Function

The following Timing function is provided in the MicroMAC API.

Function Page

u32MMAC_GetTime 302
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 301

Appendices
u32MMAC_GetTime

Description

This function can be used to obtain the current ‘time’, based on the value of an
internal clock which runs at 62500 Hz. The function is only useful when a ‘delayed
transmission’ or ‘delayed receive’ is to be performed. The returned clock value can
be used to determine the value to be specified in the function
vMMAC_SetTxStartTime() or vMMAC_SetRxStartTime(), in order to start a
transmission or receive at a certain time.

Parameters

None

Returns

Current value of 62500-Hz internal clock

uint32 u32MMAC_GetTime(void);
302 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.4 Structures

K.4.1 tsMacFrame

The tsMacFrame structure contains the frame for a ‘MAC mode’ operation.

typedef struct

{

 uint8 u8PayloadLength;

 uint8 u8SequenceNum;

 uint16 u16FCF;

 uint16 u16DestPAN;

 uint16 u16SrcPAN;

 MAC_Addr_u uDestAddr;

 MAC_Addr_u uSrcAddr;

 uint16 u16FCS;

 uint16 u16Unused;

 union

 {

 uint8 au8Byte[127];

 uint32 au32Word[32];

 } uPayload;

} tsMacFrame;

where:

 u8PayloadLength is the payload data length, in bytes

 u8SequenceNum is the sequence number for the frame (this is the least
significant byte of the frame counter)

 u16FCF is the value of the Frame Control Field (FCF)

 u16DestPAN is the PAN ID of the destination network

 u16SrcPAN is the PAN ID of the source network

 uDestAddr is the address of the destination node (see Section K.4.3)

 uSrcAddr is the address of the source node (see Section K.4.3)

 u16FCS is the value of the Frame Check Sequence (FCS), filled in by the stack
for a transmitted frame and provided as information for a received frame

 u16Unused is the number of bytes of padding to be added to the payload data
to make the frame payload 32-bit word-aligned

 uPayload is a union containing the payload data as either a byte-array or
word-array (for details of the payload, refer to Appendix F.5):

 au8Byte[127] is the payload data as an array of bytes

 au32Word[32] is the payload data as an array of words

For details of the FCF and FCS values, refer to the IEEE 802.15.4 Specification.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 303

Appendices
K.4.2 tsPhyFrame

The tsPhyFrame structure contains the frame for a ‘PHY mode’ operation.

typedef struct

{

 uint8 u8PayloadLength;

 uint8 au8Padding[3];

 union

 {

 uint8 au8Byte[127];

 uint32 au32Word[32];

 } uPayload;

} tsPhyFrame;

where:

 u8PayloadLength is the payload data length, in bytes

 au8Padding[3] is an array containing the bytes of padding to be added to the
payload data to make the frame payload 32-bit word-aligned

 uPayload is a union containing the payload data as either a byte-array or
word-array (for details of the payload, refer to Appendix F.5):

 au8Byte[127] is the payload data as an array of bytes

 au32Word[32] is the payload data as an array of words

K.4.3 MAC_Addr_u

The MAC_Addr_u union structure contains a node address as a 16-bit short address
or a 64-bit extended address (IEEE/MAC address).

typedef union

{

 uint16 u16Short;

 MAC_ExtAddr_s sExt;

} MAC_Addr_u;

where:

 u16Short is a 16-bit short address

 sExt is a structure containing a 64-bit extended address (see Section K.4.4)
304 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.4.4 MAC_ExtAddr_s

The MAC_ExtAddr_s structure contains a 64-bit extended (IEEE/MAC) address.

typedef struct

{

 uint32 u32L;

 uint32 u32H;

} MAC_ExtAddr_s;

where:

 u32L is the ‘low word’ (least significant 32-bit word) of the address

 u32H is the ‘high word’ (most significant 32-bit word) of the address

K.5 Enumerations

K.5.1 ‘Transmit Options’ Enumerations

The teTxOption structure contains the enumerations used to specify the required
options for transmitting a frame.

typedef enum

{

 /* Transmit start time: now or delayed */

 E_MMAC_TX_START_NOW = 0x02,

 E_MMAC_TX_DELAY_START = 0x03,

 /* Wait for auto ack and retry: don't use or use */

 E_MMAC_TX_NO_AUTO_ACK = 0x00,

 E_MMAC_TX_USE_AUTO_ACK = 0x08,

 /* Clear channel assessment: don't use or use */

 E_MMAC_TX_NO_CCA = 0x00,

 E_MMAC_TX_USE_CCA = 0x10

} teTxOption;

The above enumerations are described in Table 30 below.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 305

Appendices
K.5.2 ‘Transmit Status’ Enumerations

The teTxStatus structure contains the enumerations used to indicate the status on
transmitting a frame.

typedef enum

{

 E_MMAC_TXSTAT_CCA_BUSY = 0x01,

 E_MMAC_TXSTAT_NO_ACK = 0x02,

 E_MMAC_TXSTAT_ABORTED = 0x04

} teTxStatus;

The above enumerations are described in Table 31 below.

Feature Enumeration Description

Delayed transmission E_MMAC_TX_START_NOW Start transmission as soon as
this function is called

E_MMAC_TX_DELAY_START Start transmission at the time
specified beforehand using
vMMAC_SetTxStartTime()

Automatic acknowledgements
and re-try

E_MMAC_TX_NO_AUTO_ACK Do not enable automatic
acknowledgements and re-try

E_MMAC_TX_USE_AUTO_ACK Enable automatic acknowl-
edgements and re-try

Clear Channel Assessment
(CCA)

E_MMAC_TX_NO_CCA Do not enable CCA

E_MMAC_TX_USE_CCA Enable CCA

Table 30: ‘Transmit Options’ Enumerations

Enumeration Description

E_MMAC_TXSTAT_CCA_BUSY Radio channel was not free

E_MMAC_TXSTAT_NO_ACK Acknowledgement was requested but not received

E_MMAC_TXSTAT_ABORTED Transmission was aborted by the user

Table 31: ‘Transmit Status’ Enumerations
306 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.5.3 ‘Receive Options’ Enumerations

The teRxOption structure contains the enumerations used to specify the required
options for receiving a frame (this feature is not currently used with a JenNet-IP
system).

typedef enum

{

 /* Receive start time: now or delayed */

 E_MMAC_RX_START_NOW = 0x0002,

 E_MMAC_RX_DELAY_START = 0x0003,

 /* Wait for auto ack and retry: don't use or use */

 E_MMAC_RX_NO_AUTO_ACK = 0x0000,

 E_MMAC_RX_USE_AUTO_ACK = 0x0008,

 /* Malformed packets: reject or accept */

 E_MMAC_RX_NO_MALFORMED = 0x0000,

 E_MMAC_RX_ALLOW_MALFORMED = 0x0400,

 /* Frame Check Sequence errors: reject or accept */

 E_MMAC_RX_NO_FCS_ERROR = 0x0000,

 E_MMAC_RX_ALLOW_FCS_ERROR = 0x0200,

 /* Address matching: enable or disable */

 E_MMAC_RX_NO_ADDRESS_MATCH = 0x0000,

 E_MMAC_RX_ADDRESS_MATCH = 0x0100

} teRxOption;

The above enumerations are described in Table 32 below.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 307

Appendices
K.5.4 ‘Receive Status’ Enumerations

The teRxStatus structure contains the enumerations used to indicate the status on
receiving a frame (this feature is not currently used with a JenNet-IP system).

typedef enum

{

 E_MMAC_RXSTAT_ERROR = 0x01,

 E_MMAC_RXSTAT_ABORTED = 0x02,

 E_MMAC_RXSTAT_MALFORMED = 0x20

} teRxStatus;

The above enumerations are described in Table 33 below.

Feature Enumeration Description

Delayed receive E_MMAC_RX_START_NOW Start receiver as soon as this
function is called

E_MMAC_RX_DELAY_START Start receiver at the time
specified beforehand using
vMMAC_SetRxStartTime()

Automatic
acknowledgements

E_MMAC_RX_NO_AUTO_ACK Do not enable automatic
acknowledgements

E_MMAC_RX_USE_AUTO_ACK Enable automatic acknowl-
edgements

Malformed frames E_MMAC_RX_NO_MALFORMED Reject frames that appear to
be malformed

E_MMAC_RX_ALLOW_MALFORMED Accept frames that appear to
be malformed

Frame Check
Sequence (FCS)
errors

E_MMAC_RX_NO_FCS_ERROR Reject frames with FCS
errors

E_MMAC_RX_ALLOW_FCS_ERROR Accept frames with FCS
errors

Address matching E_MMAC_RX_NO_ADDRESS_MATCH Reject frames that do not
match the node’s identifiers
previously set with
vMMAC_SetRxAddress()

E_MMAC_RX_ADDRESS_MATCH Accept frames that do not
match the node’s identifiers
previously set with
vMMAC_SetRxAddress()

Table 32: ‘Receive Options’ Enumerations
308 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
K.5.5 ‘Interrupt Status’ Enumerations

The teIntStatus structure contains the enumerations used to indicate the nature of
a MicroMAC interrupt.

typedef enum

{

 E_MMAC_INT_TX_COMPLETE = 0x01,

 E_MMAC_INT_RX_HEADER = 0x02,

 E_MMAC_INT_RX_COMPLETE = 0x04

} teIntStatus;

The above enumerations are described in Table 34 below.

Enumeration Description

E_MMAC_RXSTAT_ERROR Frame Check Sequence (FCS) error occurred

E_MMAC_RXSTAT_ABORTED Reception was aborted by the user

E_MMAC_RXSTAT_MALFORMED Frame was malformed

Table 33: ‘Receive Status’ Enumerations

Enumeration Description

E_MMAC_INT_TX_COMPLETE Transmission attempt has finished

E_MMAC_INT_RX_HEADER MAC header has been received (interrupt generated after the
whole frame has been received)

E_MMAC_INT_RX_COMPLETE Complete frame has been received (interrupt generated after an
acknowledgement has been sent, if requested/enabled)

Table 34: ‘Interrupt Status’ Enumerations
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 309

Appendices
K.6 MAC and PHY Transceiver Modes

Functions are provided in the MicroMAC API to transmit and receive IEEE 802.15.4
frames in ‘MAC mode’ and in ‘PHY mode’. This section describes these two modes.

K.6.1 MAC Mode

The following MicroMAC API functions allow IEEE 802.15.4 frames to be transmitted
and received in MAC mode:

 vMMAC_StartMacTransmit() described in Section K.3.2

 vMMAC_StartMacReceive() described in Section K.3.3

The JN516x MAC hardware is able to assemble IEEE 802.15.4 frame headers
automatically. This avoids the need for the software to concatenate the addressing
fields and payload data into a continuous block of memory for transmission, which
would require numerous byte-by-byte copy operations. Instead, the tsMacFrame
structure (see Section K.4.1) allows the parts of the frame header to be stored in
naturally-aligned elements, and the MAC hardware then assembles the continuous
block of bytes for transmission itself based on the setting in the Frame Control Field
(FCF). Similarly, for received frames, the MAC hardware interprets the FCF value and
places each part of the frame header into the appropriate place in the tsMacFrame
structure. Since the hardware is able to interpret the FCF and address fields, it is also
able to perform actions such as automatic acknowledgements in both the transmit and
receive directions, as well as address matching for received frames.

K.6.2 PHY Mode

The following MicroMAC API functions allow IEEE 802.15.4 frames to be transmitted
and received in PHY mode:

 vMMAC_StartPhyTransmit() described in Section K.3.2

 vMMAC_StartPhyReceive() described in Section K.3.3

In PHY mode, the MAC hardware does not attempt to interpret the Frame Control Field
and treats the entire frame as a stream of bytes. This has the disadvantage that
address matching and automatic acknowledgement are disabled, but this mode is of
value if non-standard frame formats are desired. Note that in this mode, the Frame
Check Sequence is not calculated by the hardware - if required, it must be calculated
and included in the payload by the application.

Note: Developers should normally use MAC mode
unless access to the PHY layer of the stack is
specifically required - for example, to support
non-standard frame formats.
310 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
L. Glossary

The main terms used within this document are defined below.

Term Description

Address A numeric value that is used to identify a network device.

API Application Programming Interface: A set of programming functions that
can be incorporated in application code to provide an easy-to-use inter-
face to underlying functionality and resources.

Application The program that deals with the input/output/processing requirements of
the host device, as well as high-level interfacing to the network.

Border-Router Also known as an Edge-Router. A device which provides a single point of
interaction between two networks. The device may perform translation of
address or protocol information. In a 6LoWPAN system, a Border-Router
sits between each WPAN and the LAN.

Channel A narrow frequency range within the designated radio band - for example,
the IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless
network operates in a single channel which is determined at network ini-
tialisation.

Child A network node which is connected directly to a parent node and for which
the parent node provides routing functionality. A child can be an End
Device or Router. Also see Parent.

Cluster A wireless cluster in a 6LoWPAN system is a wireless network which is
connected to a LAN via a Border-Router device.

Context Data Data which reflects the current state of a network node. The context data
must be preserved during sleep mode.

Co-ordinator The node through which a wireless network is started, initialised and
formed - the Co-ordinator acts as the seed from which the network grows,
as it is joined by other nodes. The Co-ordinator also usually provides a
routing function. All networks must have one and only one Co-ordinator.

Device ID 32-bit value that indicates the non-networking functionality of a JenNet-IP
wireless node (e.g. a type of lamp). Comprises Manufacturer ID and Prod-
uct ID.

End Device A wireless network node which has no networking role (such as routing)
and is only concerned with data input/output/processing. As such, an End
Device cannot be a parent.

Fast Commissioning Accelerated method of adding a node to a WPAN by using a pre-config-
ured fixed channel for commissioning, which is known by all potential
nodes (and is different from the channel used for normal operation).

Host Generic term for an IP device that creates or consumes data packets.

IPv4 Internet Protocol version 4: The original protocol used on the Internet, still
widely used today, employing a 32-bit addressing scheme.

IPv6 Internet Protocol version 6: The latest Internet Protocol (used by
6LoWPAN) employing a 128-bit addressing scheme.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 311

Appendices
IEEE 802.15.4 A standard wireless network protocol that is used as the lowest level of the
6LoWPAN software stack. Among other functionality, it provides the physi-
cal interface to the wireless network’s transmission medium (radio).

JenNet NXP’s proprietary wireless network protocol which sits on IEEE 802.15.4
in the software stack and provides multi-hop functionality.

Joining The process by which a device becomes a node of a network. The device
transmits a joining request. If this is received and accepted by a parent
node (Co-ordinator or Router), the device becomes a child of the parent.

Low-Energy Device A wireless device with limited energy resources (possibly powered by
‘energy harvesting’) which is not formally a part of the WPAN but which is
used to transmit commands to nodes in the WPAN. The device minimises
power consumption by using the MicroMAC software stack.

LQI Link Quality Indicator: A measure in the range 0-255 of the signal strength
of a packet received over a radio link, where 0 and 255 are the minimum
and maximum measured strengths respectively. In a Neighbour table
entry, the LQI value indicates the signal strength of the last packet
received from the relevant neighbouring node.

MIB Management Information Base: A database comprising a table of local
variables, held in memory on a wireless network node.

MicroMAC NXP-adapted version of the IEEE 802.15.4 MAC stack layer that mini-
mises memory usage and power consumption. Together with the IEEE
802.15.4 PHY layer, it forms the MicroMAC stack. Used in low-energy
devices.

Network Application ID An application-level network identifier comprising 32 bits unique to the
application, defined by the application developer

OND Over-Network Download: Allows application software upgrades on WPAN
nodes by distributing the replacement software through the WPAN from a
‘server’ device in the LAN/WAN domain and updating the software in a
node with minimal interruption to node operation.

PAN ID Personal Area Network Identifier: A 16-bit value that uniquely identifies the
wireless network in that all neighbouring networks must have different PAN
IDs.

Parent A network node which allows other nodes (children) to connect to it and
provides a routing function for these child nodes. A maximum number of
children can be accepted (this limit is user-configurable). A parent can be a
Router or the Co-ordinator. Also see Child.

PER Packet Error Rate: A measure of the number of packets that successfully
reached their destination as a percentage of the total packets sent. Thus,
the PER is in the range 0-100, where 0 indicates that all packets were suc-
cessful and 100 indicates that no packets were successful.

Router A wireless network node which provides routing functionality (in addition to
input/output/processing), if used as a parent node. Also see Routing.

Routing The ability of a network node to pass messages from one node to another,
acting as a stepping stone from the source node to the target node. Rout-
ing functionality is provided by Routers and the Co-ordinator. Routing is
handled by the network level software and is transparent to the application
on the node.

Term Description
312 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Sleep Mode An operating state of a node in which the device consumes minimal power.
During sleep, the only activity of the node is to time the sleep duration to
determine when to wake up and resume normal operation. The total sleep
duration is user-configurable. Normally, only End Devices sleep.

Stack The collection of software layers used to operate a system. The high-level
user application is at the top of the stack and the low-level interface to the
transmission medium is at the bottom of the stack.

UDP User Datagram Protocol: Simple message-based connectionless protocol
used in IP. Messages in a 6LoWPAN system are implemented as UDP
packets embedded in the payloads of IPv6 packets.

WPAN Wireless PAN: A Personal Area Network (PAN) implemented wirelessly
through radio communication between nodes.

Term Description
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 313

Appendices
314 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

 JenNet-IP WPAN Stack
User Guide
Revision History

Version Date Comments

1.0 6-July-2012 First release

1.1 18-Sept-2012 Various additions and corrections made

1.2 10-Jan-2013 Updated for the JN516x devices

1.3 13-Feb-2013 Various updates and corrections made

1.4 15-Aug-2013 Updated for JenNet-IP v1.1 - added fast commissioning mode,
low-energy devices and the MicroMAC stack, and made other minor
modifications/corrections.
JN-UG-3080 v1.4 © NXP Laboratories UK 2013 315

JenNet-IP WPAN Stack
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
316 © NXP Laboratories UK 2013 JN-UG-3080 v1.4

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks

	Part I: Concept Information
	1. Introduction
	1.1 Wireless IP
	1.2 6LoWPAN
	1.3 Software Architecture
	1.4 JenNet-IP
	1.5 JenNet-IP User Documentation
	1.6 Where Now?

	2. Wireless Network Concepts
	2.1 Wireless Operation
	2.1.1 Radio Communication
	2.1.2 Battery Power

	2.2 Network Communications
	2.3 Network Node Types
	2.4 Network Topology
	2.5 Network Identity
	2.6 Node Addressing
	2.7 Routing
	2.7.1 Neighbour and Routing Tables
	2.7.2 Routing Process on a Node

	2.8 Network Formation and Operation
	2.9 Other Network Operations
	2.9.1 Auto-ping
	2.9.2 Sleep Mode
	2.9.3 Data Polling

	3. JenNet-IP System Overview
	3.1 Hardware Architecture and Components
	3.1.1 WPAN (Wireless Cluster)
	3.1.2 LAN
	3.1.3 Border-Router (WPAN-LAN Router)
	3.1.4 WAN
	3.1.5 IP Host

	3.2 Software Architecture and Components
	3.2.1 Software Overview
	3.2.2 Software Components (IPv6 Case)
	3.2.3 Software Components (IPv4 Case)
	3.2.4 JenNet-IP Browser

	3.3 JenNet-IP WPAN Stack
	3.3.1 Application Level
	3.3.2 Network Level
	3.3.3 Physical/Data Link Level

	3.4 Essential JenNet-IP Concepts
	3.4.1 MIBs and MIB Variables
	3.4.2 Traps

	3.5 Network Data and Standard MIBs
	3.6 Network Security
	3.7 JenNet Network Profiles
	3.8 Fundamental Operations in JenNet-IP
	3.9 Low-Energy Devices
	3.9.1 Principles of Low-Energy Devices
	3.9.2 Configuration of Low-Energy Devices
	3.9.3 Registering a Low-Energy Device with a WPAN

	Part II: JenNet-IP Embedded API
	4. WPAN Application Development
	4.1 Starting and Forming a WPAN
	4.1.1 Performing a Cold Start
	4.1.2 Performing a Warm Start
	4.1.3 Fast Commissioning Mode
	4.1.3.1 Principles of Fast Commissioning
	4.1.3.2 Coding Fast Commissioning

	4.2 Storing and Transferring Data
	4.2.1 Creating a MIB and its Variables
	4.2.2 Remotely Discovering MIBs
	4.2.2.1 Obtaining List of MIBs
	4.2.2.2 Obtaining List of Variables in a MIB

	4.2.3 Remotely Setting MIB Variable Values
	4.2.4 Remotely Obtaining MIB Variable Values
	4.2.5 Remote Monitoring of MIB Variables (using Traps)

	4.3 Forming Multicast Groups
	4.4 Obtaining Error Reports
	4.5 Handling Events
	4.5.1 Stack Events
	4.5.2 Data Events
	4.5.3 Peripheral Events

	4.6 Entering and Leaving Sleep Mode
	4.6.1 Entering Sleep Mode
	4.6.2 Leaving Sleep Mode
	4.6.3 ‘Stay Awake’ Request

	4.7 Data Polling
	4.7.1 Polling Methods
	4.7.2 Polling Events

	4.8 Persisting Context Data
	4.9 Using Low-Energy Devices
	4.9.1 Implementation on Low-Energy Device
	4.9.2 Implementation in JenNet-IP WPAN
	4.9.2.1 On the Co-ordinator
	4.9.2.2 On a Router
	4.9.2.3 On a Target Node

	5. JIP Embedded API General Functions
	5.1 Stack Management Functions
	v6LP_InitHardware
	eJIP_Init
	iJIP_ResumeStack
	vJIP_Tick
	vJIP_Sleep
	u32JIP_GetErrNo
	vJIP_EnableSecurity
	vApi_DeleteChild
	vApi_ConfigureFastCommission
	eApi_SendNetworkAnnounceEnhanced
	eApi_SendLowEnergyInform

	5.2 Stack Mode Functions
	vApi_SetStackMode
	u16Api_GetStackMode

	5.3 Network Profile Functions
	bJnc_SetJoinProfile
	bJnc_SetRunProfile
	vJnc_GetNwkProfile
	u8GetCurJoinProfile
	u8GetCurRunProfile
	bJnc_ChangeJoinProfile

	5.4 Data Transfer Functions
	eJIP_Poll
	i6LP_RecvFrom

	5.5 IPv6 Address Functions
	iJIP_CreateInterfaceIdFrom64
	iJIP_GetOwnDeviceAddress
	iJIP_GetLastDestinationAddr
	iJIP_GetLastSourceAddr
	bJIP_AddGroupAddr
	bJIP_RemoveGroupAddr

	5.6 IP Functions
	vJIP_SetDefaultMaxHopCount
	vJIP_SetPacketDefragTimeout

	6. JIP Embedded API MIB Functions
	6.1 MIB Macros
	6.1.1 MIB Type Definition Macros
	START_DEFINE_MIB
	DEFINE_VAR
	END_DEFINE_MIB

	6.1.2 MIB Declaration Macros
	JIP_START_DECLARE_MIB
	JIP_CALLBACK
	JIP_END_DECLARE_MIB

	6.2 MIB Initialisation Function
	eJIP_RegisterMib

	6.3 Local Variable Access Functions
	vJIP_NotifyChanged
	vJIP_SetEnabled
	eJIP_PacketAddData
	eJIP_AddTrap
	eJIP_RemoveTrap

	6.4 Remote Variable Access Functions
	eJIP_Remote_ID_Set
	eJIP_Remote_TableGet
	eJIP_Remote_Trap
	eJIP_Remote_Untrap
	eJIP_Remote_QueryMib
	eJIP_Remote_QueryVar

	7. JIP Embedded API Callback Functions
	7.1 General Callback Functions
	vJIP_ConfigureNetwork
	bJIP_GroupCallback
	vJIP_PeripheralEvent
	vJIP_StackEvent
	v6LP_DataEvent
	vJIP_StayAwakeRequest

	7.2 MIB and Trap Callback Functions
	vJIP_Remote_SetResponse
	vJIP_Remote_GetResponse
	vJIP_Remote_TableGetResponse
	vJIP_Remote_TrapResponse
	vJIP_Remote_TrapNotify
	vJIP_Remote_QueryMibResponse
	vJIP_Remote_QueryVarResponse
	vJIP_Remote_DataSent

	8. JIP Embedded API Structures and Enums
	8.1 Data Types
	8.1.1 tsJIP_InitData
	8.1.2 tsNwkInfo
	8.1.3 MAC_ExtAddr_s
	8.1.4 ts6LP_SockAddr
	8.1.5 tsJIP_StackGroupChange
	8.1.6 tsJIP_MibDef
	8.1.7 tsJIP_VarDef
	8.1.8 tsJIP_MibInst
	8.1.9 tsJIP_QueryMibResponse
	8.1.10 tsJIP_QueryVarResponse
	8.1.11 prSet
	8.1.12 prGet
	8.1.13 tsJIP_TableData
	8.1.14 tsAssocNodeInfo
	8.1.15 EUI64_s
	8.1.16 in6_addr
	8.1.17 tsStackReset

	8.2 Enumerations
	8.2.1 teJIP_Device
	8.2.2 teJIP_VarType
	8.2.3 teJIP_Access
	8.2.4 teJIP_AccessType
	8.2.5 teJIP_PollResponse
	8.2.6 teJIP_Security
	8.2.7 teLowEnergyStatus

	8.3 Events
	8.3.1 teJIP_StackEvent
	8.3.2 teJIP_DataEvent

	8.4 Return Codes
	8.4.1 teJIP_Status
	8.4.2 teJenNetStatusCode

	8.5 Error Codes and Enumerations
	8.5.1 te6LP_ErrorCode
	8.5.2 te6LP_ErrorInfo

	9. JenNet-IP Parameters
	9.1 JenNet Network Parameters (tsNetworkConfigData)
	9.2 JenNet Network Profile Parameters (tsNwkProfile)
	9.3 Stack Parameters

	Part III: Optional Features
	10. Over-Network Download (OND)
	10.1 OND Terminology
	10.2 OND Features
	10.3 General Operation
	10.4 Image Storage
	10.5 Multi-Image Bootloader
	10.6 OND Restrictions for JN5164
	10.7 OND Process
	10.7.1 Initiating an OND
	10.7.2 Downloading an Image
	10.7.3 Recovering Image Blocks

	10.8 Incorporating OND into an Application
	10.8.1 Configuration in Application
	10.8.2 Initialisation in Application
	10.8.3 Performing a Download

	10.9 OND Initialisation Functions
	eOND_SrvInit
	eOND_DevInit

	10.10 Building an Application with OND
	10.10.1 Makefile Modifications
	10.10.2 Post-Build Modifications (using Checksum Tool)
	10.10.3 OND Checksum Tool

	11. Standalone WPAN
	11.1 Architecture and Operation
	11.2 WPAN Formation
	11.3 IP Extension

	Part IV: Appendices
	A. Notes on JenNet Initialisation
	A.1 Routing
	A.2 Losing a Parent Node (Orphaning)
	A.2.1 Detecting Orphaning
	A.2.2 Re-joining the Network

	A.3 Losing a Child Node
	A.3.1 End Device Children
	A.3.2 Router Children

	A.4 Auto-polling

	B. Handling ICMP Messages
	C. Identifiers
	C.1 Device ID
	C.2 Device Type ID
	C.3 MIB ID

	D. Network Application ID
	D.1 Channel Scan
	D.2 Route Establishment
	D.3 Functions
	vApi_SetUserBeaconBits
	vApi_RegBeaconNotifyCallback
	v_6LP_SetUserData
	v_6LP_SetNwkCallback

	E. JenNet-IP Data Packet Format
	F. JenNet-IP Principles
	F.1 Introduction
	F.1.1 JIP Modules
	F.1.2 JIP Variables
	F.1.3 JIP Commands

	F.2 Discovery
	F.3 Standard Modules
	F.3.1 Node Module
	F.3.2 JenNet Module
	F.3.3 Groups Module
	F.3.4 OND Module
	F.3.5 DeviceID Module

	F.4 Standard Commands
	F.4.1 ‘Get’ Request
	F.4.2 ‘Get by ID’ Request
	F.4.3 ‘Get’ Response
	F.4.4 ‘Set’ Request
	F.4.5 ‘Set by ID’ Request
	F.4.6 ‘Set’ Response
	F.4.7 ‘Query Modules’ Request
	F.4.8 ‘Query Modules’ Response
	F.4.9 ‘Query Variables’ Request
	F.4.10 ‘Query Variables’ Response
	F.4.11 ‘Trap’ Request
	F.4.12 ‘Untrap’ Request
	F.4.13 ‘Trap’ Response
	F.4.14 Trap Notifications

	F.5 Low-Energy Frames
	F.6 Enumerations
	F.6.1 Variable Type Enumerations
	F.6.2 Access Type Enumerations
	F.6.3 Status Enumerations

	G. JenNet-IP Browser
	G.1 Browser Functionality
	G.2 Pre-requisites
	G.2.1 Preparing an IPv6 Connection
	G.2.2 Preparing an IPv4 Connection

	H. Memory Heap
	H.1 Heap Organisation and Use
	H.2 Heap Error Conditions

	I. Example Over-Network Download (OND)
	J. Exception Handling
	J.1 Exception Types
	J.2 Exception Handlers
	J.2.1 Handler Registration for JN516x
	J.2.2 Handler Registration for JN514x

	J.3 Stack Frame

	K. MicroMAC for Low-Energy Devices
	K.1 Enabling the MicroMAC
	K.2 Application Coding for the MicroMAC
	K.2.1 Initialisation
	K.2.2 Transmitting Frames
	K.2.3 Receiving Frames

	K.3 MicroMAC API
	K.3.1 Initialisation Functions
	vMMAC_Enable
	vMMAC_EnableInterrupts
	vMMAC_ConfigureRadio
	vMMAC_SetChannel

	K.3.2 Transmit Functions
	vMMAC_SetTxParameters
	vMMAC_SetTxStartTime
	vMMAC_StartMacTransmit
	vMMAC_StartPhyTransmit
	u32MMAC_GetTxErrors

	K.3.3 Receive Functions
	vMMAC_SetRxAddress
	vMMAC_SetRxStartTime
	vMMAC_StartMacReceive
	vMMAC_StartPhyReceive
	u32MMAC_GetRxErrors

	K.3.4 Timing Function
	u32MMAC_GetTime

	K.4 Structures
	K.4.1 tsMacFrame
	K.4.2 tsPhyFrame
	K.4.3 MAC_Addr_u
	K.4.4 MAC_ExtAddr_s

	K.5 Enumerations
	K.5.1 ‘Transmit Options’ Enumerations
	K.5.2 ‘Transmit Status’ Enumerations
	K.5.3 ‘Receive Options’ Enumerations
	K.5.4 ‘Receive Status’ Enumerations
	K.5.5 ‘Interrupt Status’ Enumerations

	K.6 MAC and PHY Transceiver Modes
	K.6.1 MAC Mode
	K.6.2 PHY Mode

	L. Glossary

